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Outline
⚫ Typical real-world applications via TPP 

⚫ Dyadic Event in temporal point process

⚫ Marked Event in temporal point process

⚫ Cross-domain Event in temporal point process

⚫ Parametric influence in temporal point process



Univariate 
Hawkes process:

Temporal Point Process
⚫ Describe data localized at a 

finite set of time points

Base Intensity How likely an event will occur 
when no other event triggers it

Influence between 
sequential events

Self-exciting property: the occurrence of 
one event increases the probability of 

related events in the near future.



Multi-dimensional Hawkes Process
Base Intensity

How likely an event happens on 
dimension m spontaneously

Influence between 
sequential events

How likely a historical event will 
trigger  an event on dimension m

Social 
Infectivity

MHP captures 
additional event 
influence than 
UHP.



Influence
⚫ What?

⚫ The effect that people have upon the behaviors of oneself or others.
⚫ Behavior
⚫ Active: retweet
⚫ Passive: virus infection

⚫ Why?
⚫ People interact & learn from the past

⚫ Where?
⚫ Self-influence
⚫ Mutual-influence
⚫ Between individuals

⚫ How? 
⚫ Historical behaviors influence current behaviors



Effect & Importance
⚫ Influenced individual

⚫ Carry on the same type of behavior
⚫ Retweet the same post;
⚫ Infected by the same virus.

⚫ Respond with some other type of 
behavior based on certain rules
⚫ The attack against one country may 

cause its revenge to the attacker’s allies; 
⚫ The results of current search task may 

trigger a related search task in the next.
⚫ Tracking the diffusion of memes
⚫ Study the chain reactions

Individual

State



Issues in Influence Modeling

⚫ Under different real-world 
scenarios:
⚫ The specific influence are 

diverse:

⚫ Each demands unique 
solution using:
⚫ Domain-specific knowledge:

⚫ Observed data of specific type:

Positive

Negative
pairwise

self

Textual
Temporal

Spatial

Medical

Search

Conflict
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Dyadic Event
⚫ Dyadic event: Timestamped interactions involving 

pairs of actors
⚫ Email communication, conflict between two forces

⚫ More complicated than single actor events
⚫ Actors of events can be unobserved – Dyadic Event 

Attribution Problem (DEAP)



Scenario - Conflict Data



Self- & mutual-excitation in Conflicts

⚫ One conflict will trigger future conflicts happen between the 
same actor-pair;

⚫ One conflict will trigger future conflicts that share at least one 
actor.



Mixture of Hawkes Process (MHP)
Base Intensity How likely a conflict happens  

between actor-pair m spontaneously

Influence between 
sequential conflicts

how likely a historical conflict 
will trigger  a conflict between 

actor-pair m

MHP captures 
additional event 
influence than 
existing models.



Model Inference and Additive Model
⚫ Variational inference

⚫ Additive model
⚫ parameterize each actor instead of each actor-pair



Accuracy of Event Attribution

• The model not only fits timestamps of loan 
occurrence, but also accurately predicts loan types.

Afghanistan:
3384 dyadic events

 68 actors
1010 actor-pairs

Africa:
52605 dyadic 

events
 3537 actors

1007 actor-pairs



Relational Graph

⚫ Relational graph among actors in Afghanistan Conflict data
⚫ Most sequential conflicts in Afghanistan happened between 

limited actor-pairs.

2-U.S. Amry 
4-Civilans
6-Taliban 

7-Afghanistan 
Army

9-Britain 
Army

11-Afghan 
Government
16-Police Force

 19-ISAF 
21-Private Security

Indice of important actors:



How MHP Fits Conflict Data

⚫ Although inferred with part of actor-pair unknown, MHP fits 
both identified conflicts and unidentified conflicts very well.
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Marked Event
⚫ Mark: detailed information of the corresponding event 

other than the temporal information. 
⚫ Marks can also affect the influence between events.
Event Mark
Conflict Casualty
Earthquake Magnitude
Appliance usage Consumed energy



Influence Between Marked Events

⚫ How the occurrence and the mark of an event together 
influence the occurrence and the mark of subsequent 
events in the near future.

Mark:

Event 
Occurrence:

: Influence between normal events
: Influence between marked events



Marked Hawkes Processes
⚫ Enables the modeling of the influence between marked 

events 
⚫ Directly modeling the relationship between marks and 

occurrences of different events is difficult
⚫ Combine multivariate Hawkes processes and topic models

⚫ Enforce the sparsity of β by imposing lasso type of 
regularization.

The category 
membership 

The number of infectivity 
parameters is O(M2K2)



 Scenario - Energy Disaggregation
⚫ Energy disaggregation
⚫ Take a whole home electricity signal and decompose it 

into its component appliances.
⚫ Essential for energy conservation

⚫ Fine-grained energy consumption data is not readily 
available
⚫ Require numerous additional meters installed on 

individual appliances



User Energy Usage Behavior
⚫ One powerful cue for breaking down the entire 

household’s energy consumption. 
⚫ how users perform their daily routines.
⚫ how they share the usage of appliances.
⚫ users’ habits in using certain types of appliances.

⚫ Influence between energy usage behaviors is the key to 
infer the usage amount



Influence in Energy Usage Behavior
⚫ Why influence modeling is important?

⚫ Influence between energy usage behaviors is hard to model 
directly.

⚫ Instead, model the influence among various appliances 
across different time slots.

Timelineub

ua



Energy Disaggregation Data Set

⚫ Smart*: 3 homes, 50 appliances 
⚫ REDD: 6 homes, 20 appliances
⚫ Pecan: 450+ homes, 20 appliances



Experiments

⚫ M-Hawkes-Sparse > M-Hawkes > AFAMP, NIALM > Hawkes
⚫ Only a limited number of dependencies exist between 

appliances in real world energy consumption.



Energy Usage Pattern

⚫ Smart*: refrigerator-microwave > refrigerator-toaster
⚫ REDD: washer-dryer
⚫ Pecan: refrigerator->microwave > microwave->refrigerator



Scenario - Search Task Identification
⚫ Search task
⚫ A set of queries serving for the same information need.

⚫ Challenge
⚫ Intertwined multiple intents in a user’s query sequence.

⚫ Solution

Meme Diffusion path tracking

Information need Search tasks identification



Consecutive Queries vs Search Tasks

⚫ Consecutive or temporally-close queries issued many times are more likely 
semantically related, i.e., belong to one search task.



LDA and Query Co-occurrence
⚫ LDA
⚫ One powerful graphical model that exploits word 

co-occurrence patterns in documents.

⚫ Temporally weighted query co-occurrence
⚫ How a document in LDA model is defined?

verizon wireless
Yahoo autos

autotrader wells fargo
Bank of america

Chase

Timelineu
Document

Word

The same 
information need TopicSearch Task



Temporally weighted Co-occurrence

⚫ Time window
⚫ Document: consecutive queries in a fixed time window.
⚫ Drawbacks: 
⚫ No optimal solution for window choice.
⚫ Ignore personal information.

⚫ Solution:
⚫ Weighing query co-occurrence by probability of influence 

existence.



Social influence in Search Task
⚫ Influence
⚫ The occurrence of one query raises the probability that the other 

query will be issued in the near future.

⚫ Hawkes processes – self-exciting property

verizon 
wireless

Yahoo 
autosautotrad

er
wells 
fargo

Bank of 
america

Chase

Timeli
ne

u
a

Influence existence between 
n-th and n’-th query

User’s unique 
query submission 

frequency

Temporally close 
query co-occurrence

Temporally regular 
query co-occurrence



Issues in Influence Estimation
⚫ Issues:
⚫ Not all temporally-close query-pairs have the actual 

influence in between.
⚫ Intractable to obtain an optimal solution of influence 

existence.
⚫ Solution
⚫ Concentrate on the influence existence between 

semantically related queries.



Semantic Influence
⚫ Search task           A sequence of semantically related queries 

linked by influence.
⚫ Casting both influence existence and query-topic membership 

into latent variables.

The existence probability 
of pairwise influence

The similarity of the 
memberships of two queries

Hawkes LDA

Temporal 
Information

Textual 
Information



A Toy Example

Weigh co-occurrence Limit the solution space 
of Influence existence



Experiments

⚫ Annotated search tasks in AOL & Yahoo.
⚫ LDA-Hawkes > QC > SVM,Reg-Classifier > TW, W-R
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Influence between News and Web Search



Influence between News and Web Search

Evidence of Influence Simulation of Influence Hawkes Process



Mutual Influence
Missing ???

Donald Trump Wins 
the Indiana 
Primaries
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Cross-domain Influence TPP Model

Numerical 
Version

Base 
Influence

Decay 
Function

Impact 
Function

Mutual 
Influence



Estimation of Optimal Parameters

Log-Likelihood 
Function

Numerical 
Version



Data set



How to compare influences posed by different events?

max(eigenValues(MIC)) < 1



Experiments
Forecast the next most 

influenced query
Rank queries based on future 

influence
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Why Parametric
⚫ Problem Complexity
⚫                     to learn
⚫ Hundreds of millions of individuals

⚫ No sufficient historical events
⚫ Require multiple cascades
⚫ The successive event history needs to be segmented into a 

number of independent cascades in advance.

10 * 10 network



Why Parametric – cont.
⚫ Dependency in Infectivity Matrix
⚫          are closely related.
⚫ A priori assumptions on the network topology limit the 

adaptive social networks of the approaches.
⚫ Time-varying Infectivity
⚫ Learning separate      for each time interval or with 

time-dependent function, greatly increase problem 
complexity.



Parametric Model
⚫ A compact model to parameterize the infectivity 

between individuals.
⚫ Time-varying features
⚫                             O(K)
⚫ Require only one cascades for learning
⚫ Features incorporate infectivity dependency
⚫ Simultaneously capture various network topologies

⚫ Time-varying infectivity



Definition
⚫ For individual-pair

⚫ Optimization problem:

⚫ Non-differentiable Select effective features and 
avoid overfitting



Optimization
⚫ Alternating direction method of multipliers (ADMM)

⚫ Complexity:
Multi-dimensional 

Hawkes

Para-Hawkes



Time-varying Features
⚫ Individual feature
⚫ Instant self-property of each individual.

⚫ Dyadic feature
⚫ Instant relationship between each pair of 

individuals.

⚫ Formation

Timeline
Pattern counting

i: j:



Model Dimension Variation

⚫ The impact of model dimension variation on      is 
smaller than that on     .



Performance vs #Cascade

⚫ Works well without multiple cascades



Scenario - Query Auto-Completion



Query Auto-Completion Log
⚫ Last keystroke

⚫ All keystrokes



Influence between Click Events in 
different QAC Sessions 

⚫ Influence between users’ click choices across different QAC sessions arise from 
three representative factors:
⚫ context, position, temporal information. 



Factors that Influence User’s Click 
Choices - Slot
⚫ The spatial slot (Position) information 
⚫ the displayed position of the suggested query

⚫ Quantify the degree of the influence between the click 
events from the spatial slot aspect via the following 
formula: 



Factors that Influence User’s Click 
Choices – Timestamp  
 
 

⚫ The timestamp (temporal) information 
⚫ the temporal stamp whether the click event occurs 

⚫ Quantify the degree of the influence between click 
events from the temporal aspect via the following 
formula: 



Factors that Influence User’s Click 
Choices - Context 
 
 

⚫ Rich contextual data carries value (context) information for 
the query suggestion prediction

⚫ A set of contextual features is designed to describe the 
relationship between the content of a historical query q′ and 
a current suggested query q. 

⚫ These features count the number of appearances of a certain 
pattern in a certain time range. 

Pattern counting



Factorial Hawkes
⚫ A univariate Hawkes process on each user’s issued query 

sequence. 

⚫ Simultaneously leveraging these factors and using them 
to capture the actual influence exists between click 
events across QAC sessions 

Contextual Factor Spatial Factor

Temporal Factor



Query Auto-Completion

⚫ RBCM > TDCM > RBCM > MPC, UBM, BBS



Strategy Selection

⚫ Factor importance: Context > Temporal > Spatial



Coefficient Learning of Contextual Features 

⚫ The relationship between two queries becomes significantly 
weaker wrt. the increase of temporal distance in-between.

⚫ Search engine users do have some preference on the temporal 
order of queries they submit.

⚫ Users’ click choices can vary with respect to different periods. 



Case Study

⚫ Appropriate modeling of influence between users’ click behaviors in 
different QAC sessions is critical for predicting users’ instant intent given 
short prefixes under the current QAC session.



Q & A

Thank you!



Appendix


