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Abstract
Graph matching refers to finding vertex correspon-
dence among two or multiple graphs, being funda-
mental in many applications such as image registra-
tion, DNA alignment, and automatic software bug
finding. In contrast to classic two-graph setting, re-
cently matching multiple graphs emerge for their
practical usefulness and methodological potential.
Starting by a brief introduction for traditional two-
graph matching, we walk through the recent devel-
opment of multiple graph matching methods, in-
cluding details for both models and algorithms. We
show how learning can be inter-played with graph
matching. The hope is to prompt the up-to-date ad-
vance to readers in a concrete way. Directions for
future work are also discussed.

1 Introduction
Compared with vector like data, graph is a versatile rep-
resentation for many real-world objects whereby relational
structures are involved. One fundamental problem for pro-
cessing graph data is graph matching (GM), which involves
finding common vertex correspondences over a pair or more
graphs. Departure from point matching that only considers
unary (vertex) feature similarity, graph matching establish-
es the vertex correspondence by considering both unary and
higher-order namely hyperedge (typically second-order i.e.
edge) information. Due to the introduction of higher-order
information, graph matching becomes generally NP-hard in
contrast to point matching which can be solved with glob-
al optimum using the Hungarian method [Munkres, 1957] in
polynomial time regarding with the number of vertex.

For its robustness, graph matching has been widely used
in the analysis of image [Duchenne et al., 2011b], graphic-
s [Kim et al., 2012], and genome [Zaslavskiy et al., 2009]
etc. Techniques have also been devised for cross social net-
work matching [Cao et al., 2018]. In all these domains, graph
matching serves as a building block for downstream applica-
tions such as image recognition, graphics clustering, whereby
the similarity based on aligned structure is utilized.

Over the decades, a large body of works has been develope-
d on graph matching. Due to its NP-hardness in nature, most
methods seek different approximation techniques to pursuit

the trade-off between accuracy and efficiency. Traditional-
ly, methods are mostly focused on pairwise graph matching
i.e. each time only two graphs are involved for matching.
Recently, an increasing line of methods emerge for matching
multiple graphs jointly. In our analysis, it not only opens up
new space for advanced learning of graph matching, there are
also imperatives for developing new methods in this setting:

1) From the methodology perspective, the availability to
multiple graphs sharing common or similar structure provides
a way of facilitating the disambiguation for local matching by
fusing global observations. This is especially helpful when
there exists local noise on a few graphs rendering local match-
ing among these graphs inherently ambiguous.

2) From the application perspective, in real world applica-
tions one is often given a set of graphs, for instance a collec-
tion of images, or a set of DNA. Hence it is unnecessary and
even harmful to perform two-graph matching pair by pair, and
joint matching becomes a natural choice.

As a long-standing problem over decades, graph matching
has attracted a number of literature reviews [Bunke, 2000;
Conte et al., 2004; Foggia et al., 2014; Vento, 2015; Yan
et al., 2016c]. These articles cover different subareas of
graph matching, as well as techniques loosely related to
graph matching such as graph kernel and embedding [Livi
and Rizzi, 2013], graph isomorphism and graph-subgraph i-
somorphism [Santo et al., 2003], graph edit distance [Gao
et al., 2010]. However, multi-graph matching approaches are
hardly presented in the above surveys (partly due to only until
recently is there an emerging line of work [Solé-Ribalta and
Serratosa, 2011; Huang et al., 2012; Pachauri et al., 2013;
Yan et al., 2013; Solé-Ribalta and Serratosa, 2013; Yan et al.,
2014; Chen et al., 2014; Shi et al., 2016]). One exception is
the very recent study [Yan et al., 2016c] in which multi-graph
matching is briefly discussed in Section 3.3 without mathe-
matical details (taking up less than a half page). In contrast,
this article is motivated for a more comprehensible and ded-
icated description, helping readers not only learn the basic
background but also specific models and algorithms. Perhaps
more importantly, via the detailed disclosure of related works,
one can better understand the trend for future work.

In this article, we start with a brief introduction on tradi-
tional pairwise graph matching methods, including affinity
function, relaxation techniques, and solvers, which lay the
foundation for the advance of multi-graph matching. Then



we shift to the recent advance for multi-graph matching. Fi-
nally potential directions for this emerging area is discussed.

2 Pairwise Matching for Two Graphs
Two-graph matching can be modeled as the quadratic assign-
ment problem (QAP), which is known NP-complete. In par-
ticular, as graph matching refers to a constrained optimization
problem in discrete domain, the development of two-graph
matching can be viewed by two orthogonal facets: i) how the
optimization objective is modeled; ii) how the optimization
procedure is devised. Specifically the first problem involves
the modeling of affinity function which measures the similar-
ity between vertices and edges. While the second refers to al-
gorithmic solvers and many of the methods resort to different
relaxation techniques to relax the combinatorial constraint to
continuous one, typically followed by a post step converting
the solution back to the discrete domain.

2.1 Objective function
Graph matching aims to establishing the vertex correspon-
dence such that the aligned two graphs achieve a maximum
affinity value (namely the objective function) which sums
up all the vertex-to-vertex and edge-to-edge affinity values.
When only first and second order edge information is con-
sidered, one can use an affinity matrix K ∈ Rn1n2×n1n2 to
encode the affinity between graph G1 (|G1| = n1) and G2
(|G2| = n2), whereby the diagonal elements store the vertex-
to-vertex similarity while off-diagonal carry the edge-to-edge
similarity. By letting X ∈ {0, 1}n1×n2 denote the binary cor-
respondence matrix (namely assignment matrix), the quadrat-
ic assignment problem can be written by:

J(x) = x>Kx (1)

X1n2
= 1n1

,X>1n1
≤ 1n2

,X ∈ {0, 1}n1×n2

where x = vec(X) is the column-wise vectorized version of
matrix X. The constraints refer to the fact that each vertex in
G1 shall find their one-to-one correspondence in G2 i.e. there
is no outlier in G1. This QAP form is popular in literature
[Leordeanu and Hebert, 2005; Leordeanu et al., 2009; Cho
et al., 2010; Leordeanu et al., 2012], being a more compact
writing equivalent to [Gold and Rangarajan, 1996].

Beyond the second-order affinity with the form of matrix,
higher-order similarity can be encoded by tensor representa-
tion, whereby three or more edges are grouped as a tuple and
the tensor element stores the similarity between each pair of
tuples. The widely used tensor based objective can be written
by [Lee et al., 2011] (constraints are omitted for briefly):

J(x) = H⊗1 x · · · ⊗p x (2)

where H is the affinity tensor and p is the order of the affin-
ity. Termed as hypergraph matching, various higher-order
methods [Zass and Shashua, 2008; Chertok and Keller, 2010;
Duchenne et al., 2011a; Yan et al., 2015c; Ngoc et al., 2015]
have been proposed for improved matching accuracy at the
cost of increased time and space complexity. The common
strategy is to transform the higher-order problem into the
second-order case in an iterative fashion.

In fact, most graph matching work set the affinity ma-
trix/tensor by a predefined parametric function. For instance,
the Gaussian kernel is widely used e.g. in [Cho et al., 2010]:

Kia,jb(σ) = exp
(
(dij − dab)2/− σ2

)
(3)

where dij , dab can be the Euclidean distances between two
points normalized to [0, 1] by dividing the largest edge length.
The diagonal elements can be measured by the distance be-
tween two vertices. In computer vision, typical embodiments
include the distance between two feature descriptors such as
SIFT and deep CNN features. Note here the parameter σ is a
constant and given in advance.

From Eq. 3, one can find the affinity function is param-
eterized by the manually set parameter σ. Departure from
the way of predefining affinity parameters, recent studies al-
so aim to learn the parameters in either unsupervised or su-
pervised way [Leordeanu et al., 2012; Caetano et al., 2009;
Leordeanu et al., 2011]. In particular, [Cho et al., 2013]
learns the graph structure model for matching.

2.2 Optimization algorithms
Continuous relaxation based method
To circumvent the inherent difficulty from the combinatorial
nature, many relaxation techniques have been devised over
the years. In this article, we list three popular categories:

i) spectral relaxations on the matching matrix [Leordeanu
and Hebert, 2005; Cour et al., 2006]. The matching constraint
is loosened by ‖x‖2 = 1 which can be solved efficiently;

ii) doubly-stochastic relaxation on the matching matrix
[Gold and Rangarajan, 1996; Leordeanu and Hebert, 2005;
Leordeanu et al., 2009]: according to Eq. 1, the solution do-
main is relaxed to the continuous space:

X1n2 = 1n1 ,X
>1n1 ≤ 1n2 ,X ∈ [0, 1]n1×n2 (4)

iii) semidefinite-programming (SDP) [Torr, 2003; Schelle-
wald and Schnörr, 2005]. The relaxation model for optimiza-
tion in ) [Schellewald and Schnörr, 2005] can be written as:

min
Y

Tr(QY) s.t. Y � 0, Tr(AiY) = ci (5)

where constraints are defined by s series of Ai and ci. There
is off-the-shelf solver for such an SDP problem, while the

derived high dimensional variable Y =

(
1 x>

x xx>

)
∈

R(n1n2+1)×(n1n2+1) causes scalability issue.

Discrete method
Different from the above methods working in the continu-
ous domain, and involves a post binarization, several meth-
ods tend to directly compute the solution in discrete as-
signment space. The method Integer Projected Fixed Point
(IPFP) [Leordeanu et al., 2009] is devised with the hope
that an optimal solution can be found along a (quasi) dis-
crete course. Sampling based methods [Lee et al., 2010;
Suh et al., 2012] directly generate discrete solutions via
Monte Carlo Sampling. More recently, [Adamczewski et al.,
2015] devises a tailored Tabu search for graph matching.



Path-following paradigm
From the optimization perspective, the continuation method
(i.e. path-following) is widely adopted. In [Gold and Ran-
garajan, 1996], a particular deterministic annealing procedure
is performed in the continuous space. Similar path-following
techniques are widely used in recent work [Zaslavskiy et al.,
2009; Liu et al., 2012; Zhou and Torre, 2016].

3 Joint Matching for Multiple Graphs
Many existing multi-graph matching methods are built on the
concept of consistency. In general it refers to the fact that the
bijection correspondence between graph G1 and G2 shall be
consistent with an derived one through an intermediate graph
G3: namely X12 = X13X32. It is also termed as cycle con-
sistency in literature. Obviously consistency is the necessary
condition for ideal ground truth bijections among multiple
graphs. Hence the consistency violation extent can partial-
ly reflect the matching accuracy. As a matter of fact, affinity
function may not always increase with the matching accura-
cy and even the global maximum of affinity score may not
correspond to the ground truth matchings. This is due to: i)
the ubiquitous existence of noise and ii) the inherent approx-
imation nature for the parametric affinity function modeling
to real-world graph-like data. In this regard, supplementary
to affinity objective, consistency serves as an important addi-
tional estimation to matching accuracy.

We divide recent multi-graph matching methods into three
groups. Methods in the first group iteratively transform the
multi-graph matching problem into a pairwise matching task
at each iteration. Hence off-the-shelf two-graph matching
solvers can be readily reused. While the second group in-
volves methods that take the initial (noisy) pairwise matching
result as input, and try to recover a cycle-consistent solution
by post-processing. The methods of last group take a cluster-
ing or low rank recovery perspective in feature space.

3.1 Iterative pairwise matching based methods
Methods in this category often explicitly define the consisten-
cy measurement. Here we first review two formal definition-
s appearing in [Yan et al., 2015a; 2016a], while the similar
ideas have been widely accepted in literature.
Definition 1. For N graphs {Gk}Nk=1 and a set of pairwise
matching solutions X = {Xij}N−1,Ni=1,j=i+1, the unary consis-
tency Cu(k,X) ∈ (0, 1] for graph Gk is defined by:

Cu(k,X) = 1−
∑N−1
i=1

∑N
j=i+1 ‖Xij −XikXkj‖F /2
nN(N − 1)/2

(6)

where ‖‖F is the Frobenius norm.
Definition 2. For N graphs {Gk}Nk=1 and a set of matching
solutions X, for any pair of graph Gi and Gj , the pairwise
consistency Cp(Xij ,X) ∈ (0, 1] is defined by:

Cp(Xij ,X) = 1−
∑N
k=1 ‖Xij −XikXkj‖F /2

nN
(7)

Based on the above two definitions, we introduce two rep-
resentative works which iteratively update pairwise matching.
These notations will also be used in the rest of this paper.

We discuss two complementary methods from [Yan et al.,
2015a] and [Yan et al., 2016a], which are state-of-the-arts in
this line of work [Solé-Ribalta and Serratosa, 2011; 2013].

Example I: star-shape centralized methods
The first work is firstly proposed in [Yan et al., 2013] which
is further extended to [Yan et al., 2015a]. For N graphs the
multi-graph matching objective function is written by:

X∗ = argmax
X

N∑
i,j=1,i6=j

x>ijKijxij (8)

s. t. Xij1n = 1n 1>nXij = 1>n Xij = X>ji ∈ {0, 1}n×n

Seeing the redundancy of exhaustively involving all pair-
wise matching solutions, one can introduce a series of basis
solutions {Xrk}Nk=1,k 6=r induced by a pre-selected reference
graph Gr. Then the other pairwise matchings can be derived
by Xij = XirXrj and its vectorized form can be written by

xuf = Fxur, F = Xfr ⊗ I (9)

The authors in [Yan et al., 2013] devise an alternating op-
timization procedure and at each iteration xur is to be solved
by fixing the other basis solutions:

J(xur) = x>urKurxur +

N∑
f=1,f 6=r,u

x>ufKufxuf (10)

According to Eq. 9, it can also be written in QAP form:

J(xur) = x>ur

Kur +

N∑
f=1,f 6=r,u

F>frKufFfr

xur (11)

Off-the-shelf two-graph matching solvers are mostly based on
the QAP form, and can be applied directly. As a result, giv-
en the reference graph Gr, the algorithm alternatively chooses
the index graph Gu for updating xur until the iteration con-
verges or exceeds to the maximum round.

Seeing the reference graph and alternating optimization or-
der are both randomly set in [Yan et al., 2013], the extended
work [Yan et al., 2015a] aims to adaptively find the appro-
priate reference graph Gr and alternating order. Specifically,
Gr is found by maximizing the unary consistency Cu(k,X)
defined in Eq. 6 while the alternating updating order is ac-
cording to the pairwise consistency score Cp(Xij ,X) defined
in Eq. 7: more inconsistent matchings shall have higher pri-
ority for updating to avoid error accumulation.

Such a star-shape centralized framework inherently suffers
from fragility as the information flow are all through the cen-
tral reference graph which can become the bottleneck. The
underlying assumption is that Gr shall be similar or easier to
match with other graphs, which can not hold in general.

Example II: distributed composition methods
To mitigate the above issue, a distributed multi-graph match-
ing framework is proposed in [Yan et al., 2014]. Similar to the
star-shape centralized framework, a matching will be updated
iteratively that involves an intermediate graph. The difference



is that there is no centralized reference graph, and the inter-
mediate graph is distributed among every graph in the set.
Moreover, the consistency constraint in Eq. 9 is relaxed by
adding a consistency regularizer in the objective along with
affinity score, to allow for more flexible search of matchings.

In the extended article [Yan et al., 2016a] the method it-
eratively updates the pairwise matching by maximizing a
weighted objective including both affinity and consistency:

k∗ = arg
N

max
k=1

(1−λ)J(XikXkj)+λCp(XikXkj ,X) (12)

where J(X) = vec(X)TKvec(X) is the affinity function
for pairwise matching. This compositional approach encour-
ages the estimation of matchings between dissimilar graphs
by composition of matchings along a path of similar graphs.

Efficient variants can be devised. For instance by replacing
the pairwise consistency term with the unary one, one can
obtain (see Eq. 9 in [Yan et al., 2016a]):

k∗ = arg
N

max
k=1

(1− λ)J(XikXkj) + λCu(k,X) (13)

The computational advantage is all {Cu(k,X(t−1))}Nk=1 need
be pre-computed at each iteration only once.

Note that the above approach does not involve any partic-
ular QAP solver, instead the pairwise matching is comput-
ed by a composition based trial to generate a candidate solu-
tion. This character enables a simple while effective outlier-
resistant approach as also presented in [Yan et al., 2016a].

We first introduce the two definitions about node-wise con-
sistency and affinity score as defined in [Yan et al., 2016a].
Definition 3. Given {Gk}Nk=1 and X, for node {Nuk}nuk=1 in
graph Gk, its consistency w.r.t. X is defined by Cn(u

k,X) =
1 −

∑N−1
i=1

∑N
j=i+1 ‖Y(uk,:)‖F /2
N(N−1)/2 ∈ (0, 1] where Y = Xkj −

XkiXij and Y(uk, :) is the ukth row of matrix Y.
Definition 4. Given {Gk}Nk=1, X, K, for node {Nuk}nuk=1 in
Gk, its affinity w.r.t. X and K is defined by Sn(uk,X,K) =∑N
i=1,6=k vec(Xuk

ki )
TKkivec(Xki), where Xuk

denotes the
matrix X with zeros except for the uk-th rows as is.

Assume the number of common inliers n ≤ n is given,
then the bijection solution X ∈ {0, 1}n×n can be processed
to zeroing out those outlier related rows/columns, resulting
a new assignment matrix containing n one elements which
is denoted by ψ(X). To identify the n unknown outliers, one
can either use the node-wise consistency or node-wise affinity
as defined above to zeroing out suspect outliers: the top n
node with highest node-wise consistency (affinity) score is
maintained by the notation ψc(X,X, n) (ψa(X,X,K, n)).

Then the affinity score is rewritten as:

Jψa(X) = vec (ψa(X,X, n))T Kvec(ψa (X,X, n)) (14)
The consistency terms are accordingly modified as follows:

Cψc
u (k,X, n) = 1−

∑N−1,N
i=1,j=i+1 ‖ψc(Xij − XikXkj ,X, n)‖F

nN(N − 1)

(15)

Cψc
p (Xij ,X, n) = 1−

∑N
k=1 ‖ψc(Xij − XikXkj ,X, n)‖F

2nN
(16)

While the above work does not explore how to estimate n.

Remarks for possible improvement
From the above two methods, we make an observation that
the first star-like centralized method [Yan et al., 2015a] only
adopts a single graph as the intermediate one for informa-
tion flow, while the other method [Yan et al., 2016a] goes
to another extreme allowing any graph to be an intermediate
bridge. When the graphs form multiple fine-grained cluster-
s, one reference graph is incapable to capture and diffuse the
global information effectively. Also, reiterating every graph
for evaluating Eq. 12 is computationally intensive. One pos-
sible strategy in the between is a method for devising multiple
reference graphs to improve the capacity for information flow.
On the other hand, distributed graph matching may be per-
formed locally in each cluster to reduce the computing cost.
There also leaves open questions for how to select multiple
reference graph and graph clusters for future work. Moreover
how to effectively sample cycles remains an open question.

3.2 Global consistency recovery based methods
Another body of work aim to recover a globally consisten-
t pairwise matching set from putative pairwise matchings.
Spectral techniques [Kim et al., 2012; Pachauri et al., 2013;
Huang and Guibas, 2013] are developed to extract the consis-
tent matches by the spectrum (top eigenvectors) of the matrix
composed of all putative matches. The underlying rationale is
that the problem can be formulated as quadratic integer pro-
gramming which can be relaxed into a generalized Rayleigh
problem [Pachauri et al., 2013]. In the seminal work [Huang
and Guibas, 2013], the authors show theoretical conditions
for exact recovery. They note that if the pairwise matchings
are cycle-consistent then the bulk matrix storing all matchings
is low-rank and positive semidefinite. This leads to a convex
relaxation method for estimating cycle-consistent matchings
by finding the nearest positive semidefinite matrix to the in-
put matrix stacking by all initial matchings. Improvement is
made in [Chen et al., 2014] by assuming the underlying rank
of variable matrix can be estimated reliably. Then two exten-
sions are made: i) partially matching to allow for when dif-
ferent groups of common inliers are shared among different
graph subsets, ii) robust recovery from a small fraction of ob-
servation given large portion of hidden or erroneous matches.

We start with some notations and concepts, and then state-
of-the-art methods are discussed. In [Huang and Guibas,
2013; Chen et al., 2014], a virtual universe with n+ enti-
ties is introduced and each entity can be observed by at least
one graph. Hence each pairwise matching can be written by
Xij = PiP

>
j for Pi ∈ {0, 1}ni×n+

which can be interpreted
as the mapping from Gi to nodes in universe (ni ≤ n+).

In line with the literature, we define a bulk matrix X ∈
{0, 1}M×M whereM =

∑N
i=1 ni is the total number of node

copies in all N graphs, and stack Pi into P ∈ {0, 1}M×n+

:

X =


X11 X12 · · · X1N

X21 X22 · · · X2N

...
...

. . .
...

XN1

...
... XNN

 , P =


P1

P2

...
PN

 (17)

Here the matrix in each entry Xij ∈ {0, 1}ni×nj is the pair-
wise match for recovery. Also an input bulk matrix X can be



(a) bijection (n = 3) (b) partial (n+ = 4) (c) common (n = 2)

Figure 1: The three correspondence recovery scenarios.

defined whose submatrix entry Xij is obtained by pairwise
matching. It has been well shown [Huang and Guibas, 2013;
Pachauri et al., 2013] that cycle-consistency holds if and only
if the factorization holds: X = PPT .

This also equivalently leads to the property of both positive
semidefinite and low-rank (recall n+ is the universe size):

X � 0, rank(X) = n+ (18)
This formula gives a compact and solid condition for cycle-
consistency. By using universe, it also allows for partial
matching which is practically useful [Chen et al., 2014].

There are many methods based on the above insights and
they can be grouped by three main scenarios: i) bijection, ii)
partial matching; iii) common inlier elicitation. The differ-
ence of the problem setting is illustrated in Fig. 1. Note we
do not consider one/many-to-many matching case here.

Scenario I: Recovery under bijection
Several methods are focused on the setting that all match-
ings between graph pairs are bijection. Given the initial
(noisy) pairwise matching input, agreement maximization
(i.e. discrepancy minimization) between the initial (noisy)
input match X and the optimization variable X for recovery:

max
X�0,Xij∈P

< X,X > (19)

where < ·, · > is the matrix inner product and P is the per-
mutation matrix space. Directly solving this combinatorial
problem is intractable and relaxation methods are devised.

The spectral clustering method [Pachauri et al., 2013] re-
laxes X into a rank-n symmetric matrices whose non-zero
eigenvalues are N . To solve this generalized Rayleigh prob-
lem, the N leading eigenvectors vl of X (assume N ≤ n)
is computed such that the continuous relaxed solution is
V = N

∑n
l=1 vlv

>
l . Post-processing is performed to con-

vert V to the discrete solution X e.g. using the Hungarian
method. In a more tight convex relaxation method based on
Augmented Lagrangian Method (ALM) [Huang and Guibas,
2013], the positive semidefinite constraint is preserved, and
theoretical condition for exact recovery is derived.

Scenario II: Recovery under partial matching
The MatchLift method [Chen et al., 2014] is one of the first
studying the partial matching problem. For problem Eq. 19,
to better explore the prior knowledge about the universe size
n+, they further lift the positive semidefinite constraint for
X to the following form (they remove the doubly stochastic
constraints for efficiency and empirical effectiveness):[

k 1>

1 X

]
=

[
1>

P

] [
1 P>

]
� 0 (20)

Then they present an alternating direction methods of multi-
pliers (ADMM) to solve the resulting problem.

MatchALS [Zhou et al., 2015] devises the following objec-
tive with additional sparsity and nuclear norm regularization
and relaxes X into continuous domain [0, 1]:

min
X
−
∑
i,j

< Sij ,Xij >︸ ︷︷ ︸
node affinity i.e. − < S,X >

+α < 1,X >︸ ︷︷ ︸
sparsity

+λ‖X‖∗︸ ︷︷ ︸
rank

(21)

Xii = Ini
, Xij = Xij , 0 ≤ X ≤ 1

Double-stochastic constraint for each Pij is also added.
Note that for optimization tractability, Sij ∈ Rni×nj is the

first-order node-to-node affinity and no edge information is
used, and S ∈ RM×M is the bulk version for Sij . More-
over the positive semidefinite constraint on Xij is discarded
in [Zhou et al., 2015] partly due to the use of rank constraint.
Readers are referred to [Zhou et al., 2015] for details of a fast
alternating minimization algorithm for the above model.

Scenario III: Recovery under common inlier elicitation
A drawback of the above methods [Zhou et al., 2015; Chen et
al., 2014] is the use of an excessively large n+ to accommo-
date a flexible universe incurring high algorithmic complexi-
ty. One natural idea similar to [Yan et al., 2016a] (recall Eq.
14, 15, 16 in Sec. 3.1) is to extract n < n+ common inliers
among graphsA. In this regard, [Wang et al., 2018] devises
the following objective where P ∈ {0, 1}M×n and the affin-
ity term used in Eq. 21 is omitted for efficiency as here we
solve factorized P rather than X (see Eq. 17) directly:

min
P∈Pni×n

i ,rank(Z≤n)

1

4
‖X−PP>‖2F︸ ︷︷ ︸

discrepancy to input X

+
λ

2
‖CiPi − Zi‖2F︸ ︷︷ ︸

orthographic projection

(22)
where P denotes the partial permutation matrix space as:

0 ≤ Pi1 ≤ 1, P>i 1 = 1

It holds as the n common inliers is observed in each graph.
Note the second term is the orthographic projection con-

straint that involves a constant matrix Ci ∈ R2×ni related to
the so-called measurement matrix in structure from motion
[Tomasi and Kanade, 1992] while Zi ∈ R2×n is the 2i − 1
and 2i-th row of the auxiliary variable Z ∈ R2n×n. A s-
calable block coordinate descent technique is developed in
[Wang et al., 2018] to solve this problem.

In fact, methods in Sec. 3.1 involve non-convex combina-
torial optimization which may rely on heuristic strategy e.g.
the compositional technique. For the convex-relaxation meth-
ods in Sec. 3.2, [Huang and Guibas, 2013; Chen et al., 2014]
still suffer scalability issue as SDP constraint is directly incor-
porated. Moreover, most methods [Huang and Guibas, 2013;
Chen et al., 2014; Wang et al., 2018] surprisingly never ex-
plore the affinity information during optimization (see Eq. 19,
23). Finally for all these methods, the size of the universe n+
or the common inliner set size n need to be explicitly provid-
ed, rendering them less applicable in real problems.



Scenario IV: Distributed multi-graph matching
The main bottleneck for methods in Sec. 3.2 is the adoption
of the bulk matrix X. One natural idea is to divide the whole
matrix into overlapping submatrix, and accordingly the graph
set is clustered into multiple overlapping groups. The authors
in [Hu et al., 2018] give a theoretical study on the connection
between the cycle-consistency on overlapped clusters Vi and
that on the whole graph set ∪iVi. Furthermore, they devise
the following objective which can be viewed as a distributed
version of Eq. 21 in [Zhou et al., 2015] by summing up the
objectives in all overlapping clusters Vi:

min
X

∑
i

(< α1Vi − SVi ,XVi > +λ‖XVi‖∗) (23)

s. t. XVi∩j
i

= XVi∩j
j
, ∀i, j

Here Vi∩ji denotes the overlapping graphs of graph cluster Vi
and Vj in Vi and similar for Vi∩jj . This constraint ensures the
local consistency in each XVi can lead to the global consis-
tency for the whole bulk matrix X. The additional constraints
in Eq. 21 are also used while literally omitted here for space
saving. For how a set of valid clusters Vj based on a given
set of graphs and initial pairwise matchings, [Hu et al., 2018]
also presents a greedy construction method.

Note that in another concurrent work [Leonardos et al.,
2017], the authors propose a decentralized version of the cen-
tralized spectral method [Pachauri et al., 2013] for multi-
graph matching. However, akin to [Pachauri et al., 2013],
their method can only apply to the bijection case, while the
model in Eq. 23 is applicable to the more general partial
matching problem (in line with the model in Eq. 21).

3.3 Rank-1/Clustering based methods
Rank-1 methods These methods shuffle the feature vectors
of graph nodes, such that the aligned vectors shall be iden-
tical to each other and the resulting stacking matrix shall be
rank one. The low-rank sparsity decomposition model is of-
ten used [Zeng et al., 2012; Yan et al., 2015b]. However, in
their models, a permutation matrix is required restricted to the
bijection assumption. Moreover, the resulting optimization
problem is sensitive to initial point. Hence clustering meth-
ods are developed to increase the flexibility and robustness
whereby the rank-1 condition need no strictly be satisfied.

Clustering methods In [Yan et al., 2016b], a feature space
clustering view is adopted to the multi-graph/image matching
problem, with an iterative constrained clustering algorithm al-
ternating between a matching step and the computing of mean
features. Along this perspective, a density-based clustering
method called QuickMatch is proposed in [Tron et al., 2017],
whereby QuickShift [Vedaldi and Soatto, 2008] is used for
finding clusters from modes by non-parametric estimate of
the density distribution. One advantage is that neither the uni-
verse size nor the common inlier number need to be specified.
Moreover it naturally allows for partial matching.

Finally it is worth noting that different from methods in
Sec. 3.1, none of the methods in Sec. 3.2 and Sec. 3.3 explic-
itly explores the second-order or higher-order affinity infor-
mation (e.g. Kij in Eq. 8) for iterative optimization, though

such an affinity could have been used to generate the initial
pairwise matching i.e. X for subsequent recovery, or could be
indirectly encoded by the node-wise unary similarity matrix
Sij as used in Eq. 21. We believe this is the main reason for
the superiority in accuracy by methods [Yan et al., 2015a;
2016a] compared with [Chen et al., 2014; Pachauri et al.,
2013] as verified by a third-party evaluation [Shi et al., 2016].

4 Outlook and Concluding Remarks
Based on the review of recent advance from two-graph to
multi-graph matching, we identify promising active direc-
tions for ongoing efforts on multi-graph matching.

Incremental multiple graph matching
The above multi-graph matching methods however mostly
consider the offline setting i.e. all graphs are available for
joint matching in one-shot. In applications graphs often arrive
over time hence online incremental multi-graph matching is
worth further study. One recent effort in this direction refers
to [Chakraborty et al., 2016], however only first-order node-
wise similarity is considered, and the method is only applied
on small-scale data. An exception is a recent work [Yu et al.,
2018a], which handles the online case with the composition
technique proposed in [Yan et al., 2016a].

Learning by/for graph matching
There has been efforts [Cho et al., 2013] on learning geomet-
rical affinity function’s parameters supervised by the manu-
ally labeled correspondence. There are two possibilities for
further exploration. The first is using cycle-consistency as the
supervision signal for training the affinity function instead of
the manual correspondence labels. On the other hand, deep
features e.g. based on convolutional neural networks can
be learned instead of traditional handcrafted feature descrip-
tors. More recently, the seminal work present a deep network
based pipeline for graph matching [Zanfir and Sminchisescu,
2018], which shows promising results by learning the feature
and affinity function with high-capacity networks.

Repeated object discovery by matching
For co-detecting or co-segmenting repeated objects in a im-
ages, the capability for automatically discovering repeated
objects by matching is desirable. For similar objects dis-
tributed in multiple images, proposal flow [Ham et al., 2016]
is proposed. [Yu et al., 2018b] explores a more challenging
scenario for automatically discovering two repeated objects
in one image, while how to solve the case for multiple ob-
ject remains open. Another relevant technique is progressive
matching and graph structure updating [Cho and Lee, 2012],
whereby the graph structure and affinity is not fixed but can
be dynamically adjusted in the matching procedure.

Concluding remarks
This paper is a retrospective review on the course of multi-
graph matching, which is relatively a new area compared with
the classic setting of two-graph matching. By incorporating
more graph data, it opens the room for new theory, models,
and algorithms to push the frontier of graph matching.
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