Temporal point processes in practice

Liangda Li

Yahoo Research

August 4th, 2019

Typical real-world applications via TPP

Dyadic Event in temporal point process

Marked Event in temporal point process

Cross-domain Event in temporal point process

Parametric influence in temporal point process

Influence

• What?

- The effect that people have upon the beh
- Behavior
 - Active: retweet
 - Passive: virus infection
- Why?
 - People interact & learn from the past
- Where?
 - Self-influence
 - Mutual-influence
 - Between individuals
- How?
 - Historical behaviors influence current behaviors

gideonstrumpet @gideonstrumpet 1 Is this legit? @Popehat @marcorandazza RT @tbuhl: @[me] then I would sue you because I have stated my tweets are not on record comments Expand

Popehat @Popehat 10h @gideonstrumpet @marcorandazza @tbuhi no, not legit. Ignorant and preposterous. Expand

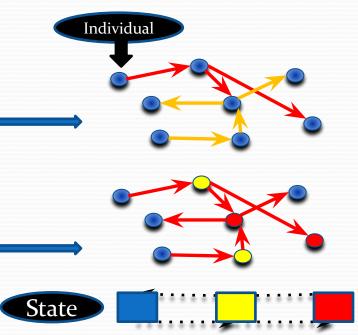
Mark W. Bennett @MarkWBennett 9h @Popehat @gideonstrumpet @marcorandazza @tbuhl "That's cray cray," as Thing One is wont to say. Expand

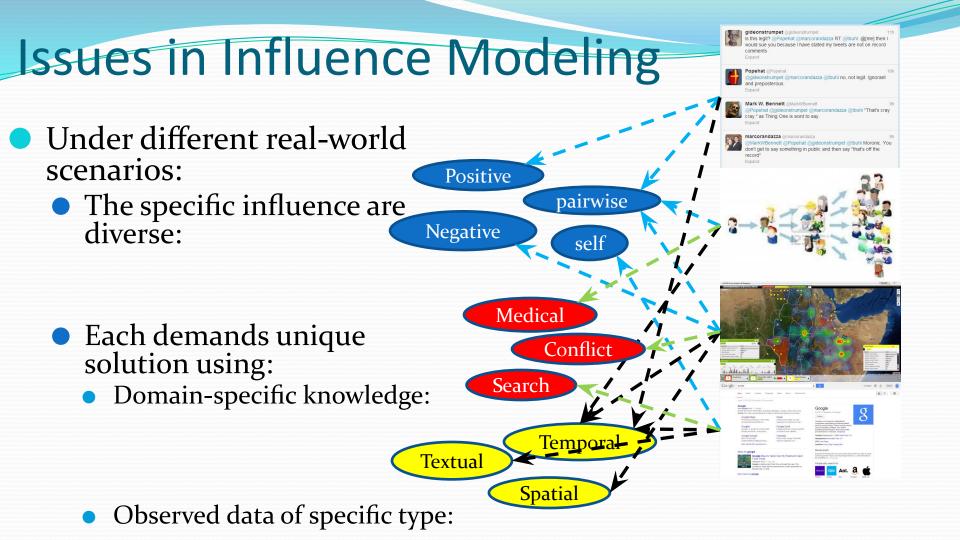
marcorandazza @marcorandazza 9h @MarkWBennett @Popehat @gideonstrumpet @tbuhl Moronic. You don't get to say something in public and then say "that's off the record" Expand

Effect & Importance

Influenced individual

- Carry on the same type of behavior
 - Retweet the same post;
 - Infected by the same virus.
- Respond with some other type of behavior based on certain rules
 - The attack against one country may cause its revenge to the attacker's allies;
 - The results of current search task may trigger a related search task in the next.
- Tracking the diffusion of memesStudy the chain reactions





Typical real-world applications via TPP

Dyadic Event in temporal point process

Marked Event in temporal point process

Cross-domain Event in temporal point process

Parametric influence in temporal point process

Dyadic Event

- Dyadic event: Timestamped interactions involving pairs of actors
 - Email communication, Conflict, Gang rivalry
- More complicated than single actor events
 - Influence between different pairs that shared the same actor
- Actors of events can be unobserved Dyadic Event Attribution Problem (DEAP)

Data set

- Conflict
 - ACLED: <u>https://www.acleddata.com/</u>
- Gang rivalry
 - LADP: <u>http://www.lapdonline.org/</u>
- Email communication
 - Rnron: http://www.cs.cmu.edu/~enron/

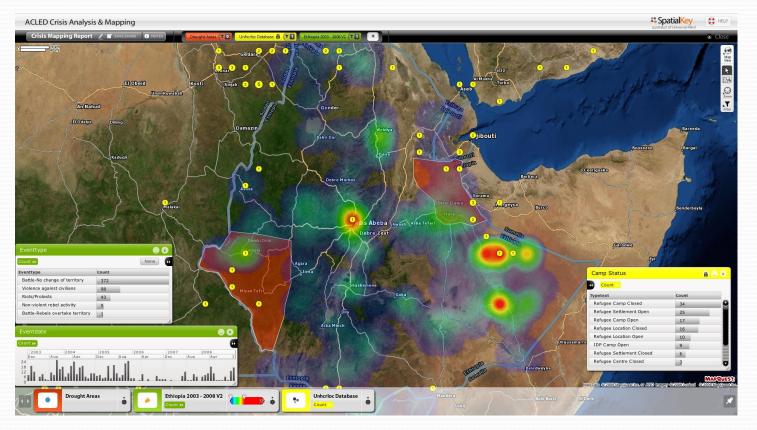
Hawkes Process for DEAP

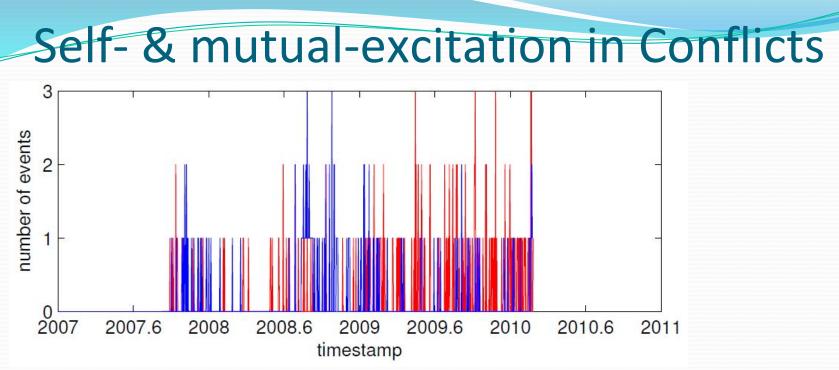
• Introduce binary variable Z_{n,m} to denote whether the n-th event belongs to pair m

$$\lambda_m^*(t) = \mu_m(t) + \sum_{t_l < t} \sum_{m'} \kappa_{m'm}(t - t_l) Z_{l,m'}$$

- Expectation-maximization(EM) algorithm [Hegemann, et al., 2013]
 Variational inference [Li, et al., 2013]
 Additive Model
 - parameterize each actor instead of each actor-pair $\mu_m = \mu'_{m1} + \mu'_{m2}, \quad \alpha_m = \alpha'_{m1} + \alpha'_{m2},$

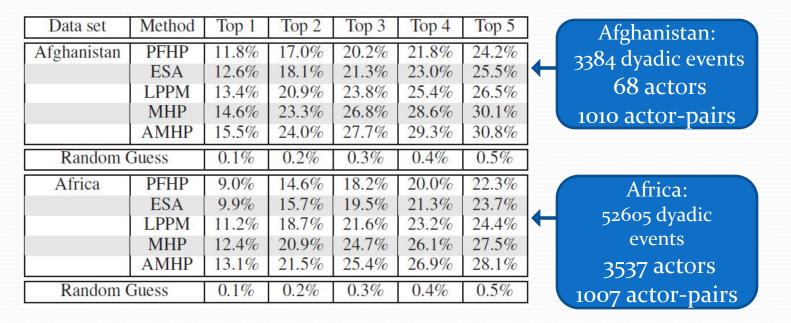
Scenario - Conflict Data





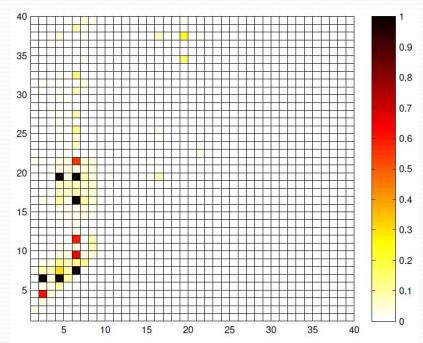
- One conflict will trigger future conflicts happen between the same actor-pair;
- One conflict will trigger future conflicts that share at least one actor.

Accuracy of Event Attribution



 The underlying dependency network of actor-pairs in real-world data has some special structures.

Relational Graph



Indice of important actors:

4-Civilans 6-Taliban 7-Afghanistan Army 9-Britain Army 11-Afghan Government **16-Police Force** 19-ISAF

Relational graph among actors in Afghanistan Conflict data
 Most sequential conflicts in Afghanistan happened between limited actor-pairs.

Typical real-world applications via TPP

Dyadic Event in temporal point process

Marked Event in temporal point process

Cross-domain Event in temporal point process

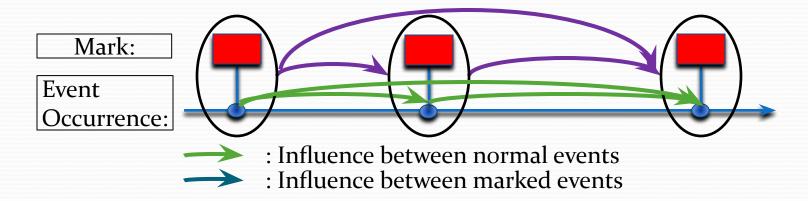
Parametric influence in temporal point process

Marked Event

- Mark: detailed information of the corresponding event other than the temporal information.
- Marks can also affect the influence between events.

Event	Mark
Conflict	Casualty
Earthquake	Magnitude
Appliance usage	Consumed energy
Search	Query

Influence Between Marked Events



 How the occurrence and the mark of an event together influence the occurrence and the mark of subsequent events in the near future.

Marked Hawkes Processes

- Enables the modeling of the influence between marked events $\lambda_t^i = \mu^i + \sum_{m=1}^M \phi^{i,k_m} (t - t_m, \xi_m),$
- Directly modeling the relationship between marks and occurrences of different events is difficult

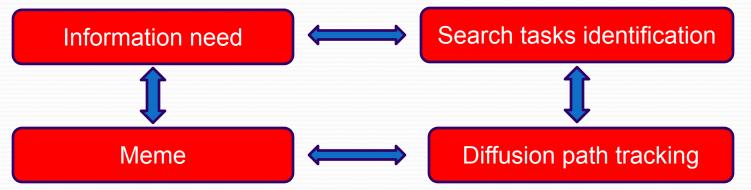
• Assumes a factorized form for the effect of the marks. [Bacry. Et al. 2015] $\phi_{ii}(t, \xi) = \phi_{ii}(t) \phi_{ii}(\xi)$

$$\phi^{ij}(t,\xi) = \phi^{ij}(t)\chi^{ij}(\xi)$$

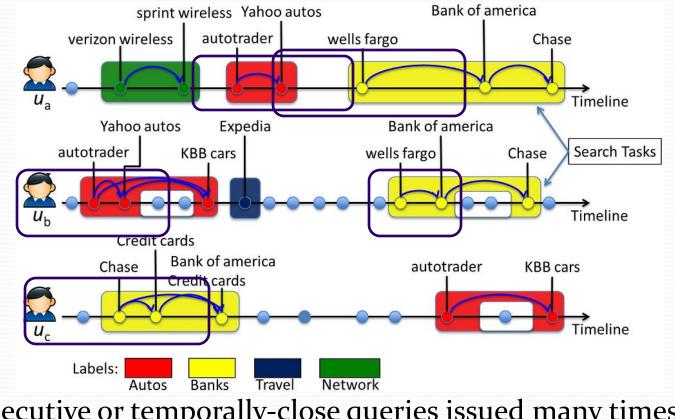
• Utilize mark to better describe the existence and degree of influence

Scenario - Search Task Identification

- Search task
 - A set of queries serving for the same information need.
- Challenge
 - Intertwined multiple intents in a user's query sequence.
- Solution



Consecutive Queries vs Search Tasks

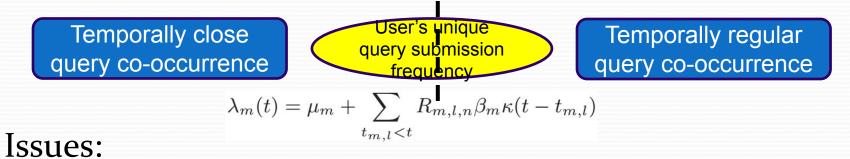


 Consecutive or temporally-close queries issued many times are more like semantically related, i.e., belong to one search task.

Influence in Search Task

Influence

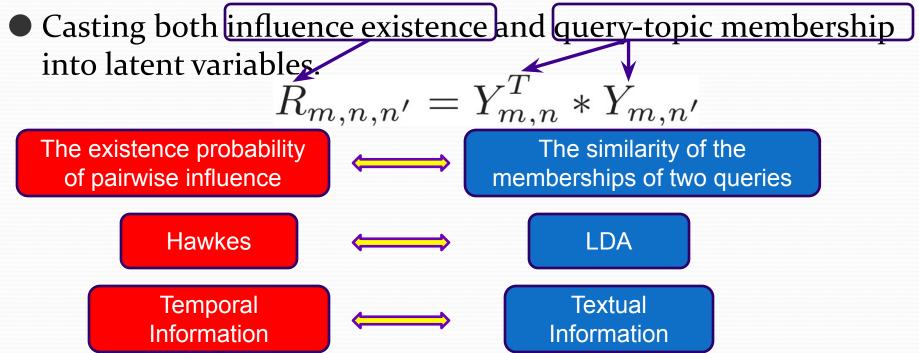
• The occurrence of one query raises the probability that the other query will be issued in the near future.



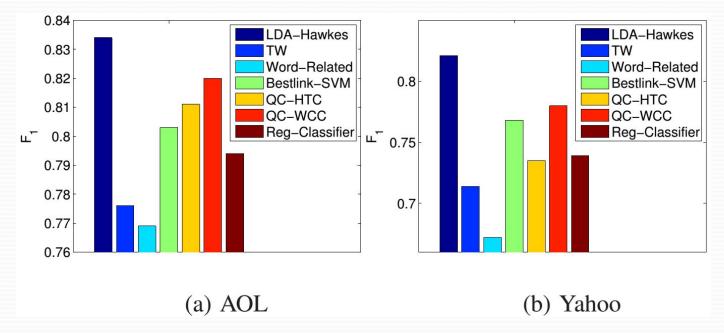
- Not all temporally-close query-pairs have the actual influence in between.
 - Intractable to obtain an optimal solution of influence existence.

Semantic Influence

 Concentrate on the influence existence between semantically related queries.



Experiments



Annotated search tasks in AOL & Yahoo.
 LDA-Hawkes > QC > SVM,Reg-Classifier > TW, W-R

Scenario - Energy Disaggregation

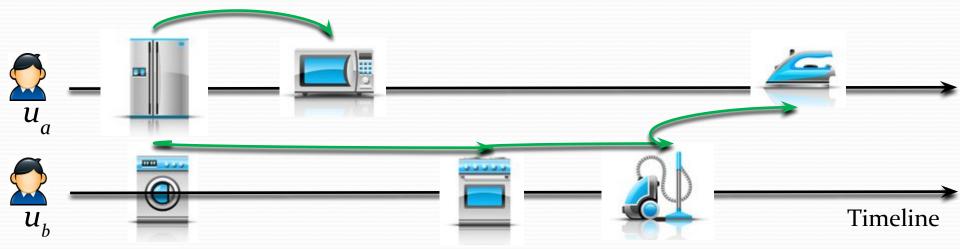
- Energy disaggregation
 - Take a whole home electricity signal and decompose it into its component appliances.
 - Essential for energy conservation
- Fine-grained energy consumption data is not readily available
 - Require numerous additional meters installed on individual appliances

User Energy Usage Behavior

- One powerful cue for breaking down the entire household's energy consumption.
 - how users perform their daily routines.
 - how they share the usage of appliances.
 - users' habits in using certain types of appliances.
- Influence between energy usage behaviors is the key to infer the usage amount

Influence in Energy Usage Behavior

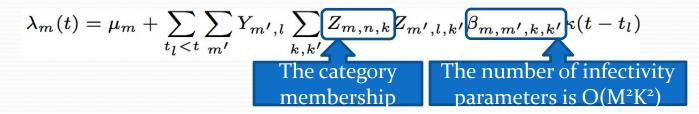
• Why influence modeling is important?



- Influence between energy usage behaviors is hard to model directly.
- Instead, model the influence among various appliances across different time slots.

Marked Hawkes Processes

Combine multivariate Hawkes processes and topic models

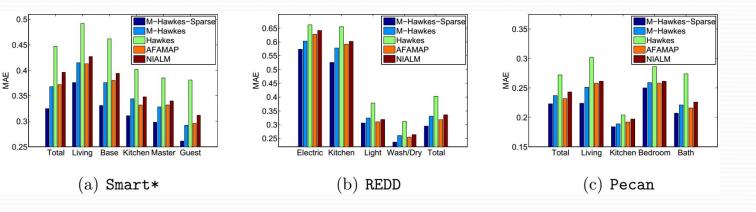


• Enforce the sparsity of β by imposing lasso type of regularization.

Energy Disaggregation Data Set

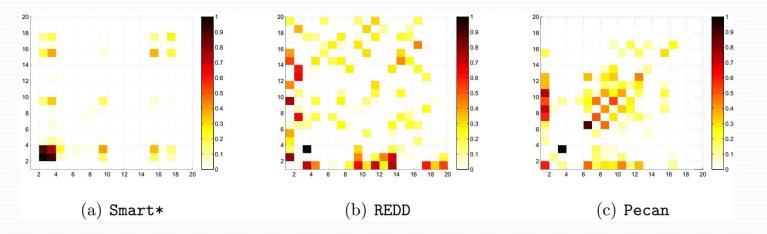
- Smart*: 3 homes, 50 appliances
 REDD: 6 homes, 20 appliances
- Pecan: 450+ homes, 20 appliances

Experiments



M-Hawkes-Sparse > M-Hawkes > AFAMP, NIALM > Hawkes
 Only a limited number of dependencies exist between appliances in real world energy consumption.

Energy Usage Pattern



- Smart*: refrigerator-microwave > refrigerator-toaster
- REDD: washer-dryer
- Pecan: refrigerator->microwave > microwave->refrigerator

Typical real-world applications via TPP

Dyadic Event in temporal point process

Marked Event in temporal point process

Cross-domain Event in temporal point process

Parametric influence in temporal point process

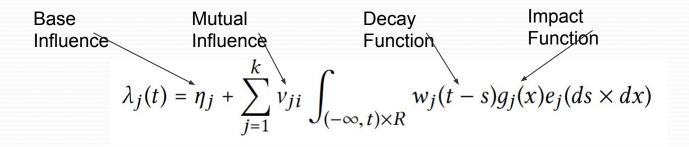
Influence between News and Web Search

Cross-domain Influence TPP Model

• Independent Influence [Santu. et al. 2017]

$$Trend(E,t) = \lambda_0 + \sum_{i=1}^{n} \alpha \cdot TxtSim(W_E, W_i) \cdot e^{-\beta(t-t_i)}$$

• Mutual Influence [Santu. et al. 2018]



Data set

Section	Total	Avg.	Avg.	Total	Avg.
	# of	Title	Body	# of	Textual
	events	Length	Length	queries	Sim.
Movies	25	18.88	458.08	193,282	2.49
Sports	15	19.53	508.4	616,449	2.48
US	18	20.38	487.77	204,926	1.99
World	11	18.18	438.81	22,197	1.96

 Table 1: Description of Event-Query Joint Dataset

Forecast the next most influenced query

Rank queries based on future influence

Metric	Methods	Movies	Sports	US	World
Accuracy	NF	0.3281	0.4894^2	0.5717 ²	0.3879
	AR	0.3879 ¹	0.4794	0.5400	0.4504
	ARD	0.2424	0.1965	0.4410	0.0443
	VAR	0.0023	0.0007	0.0029	0.0001
	IIM	0.3413	0.3660	0.5408	0.4710 ¹
	JIM	0.3642	0.4688	0.5563	0.3035
	JIM-G	0.3820^2	0.5134^{1}	0.5843 ¹	0.4544^2

Table 9: Predicting the most frequent query in future

Metric	Method	Movies	Sports	US	World
	NF	0.5914	0.6693	0.8060	0.4465
	AR	0.6713^2	0.7440^2	0.7789	0.5200
	ARD	0.2642	0.2977	0.4717	0.0827
NDCG	VAR	0.0087	0.0052	0.0136	0.0015
	IIM	0.6355	0.6976	0.8121^2	0.6555 ¹
	JIM	0.6484	0.7204	0.8022	0.4809
	JIM-G	0.6870 ¹	0.7650 ¹	0.8430 ¹	0.6062^2
RBO	NF	0.4349	0.5707	0.6491	0.3665
	AR	0.4947^2	0.5908 ²	0.6102	0.4130
	ARD	0.1803	0.2191	0.3237	0.0538
	VAR	0.0042	0.0019	0.0045	0.0001
	IIM	0.4562	0.5174	0.6509 ²	0.4676^{1}
	JIM	0.4782	0.5724	0.6436	0.3048
	JIM-G	0.5059 ¹	0.6172 ¹	0.6764^{1}	0.4332^2

Table 10: Predicting future frequencies for multiple queries. (Wilcoxon's signed rank test at level 0.05)

Typical real-world applications via TPP

Dyadic Event in temporal point process

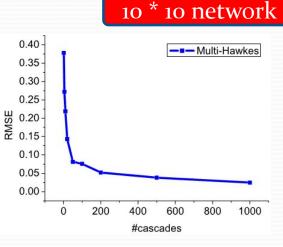
Marked Event in temporal point process

Cross-domain Event in temporal point process

Parametric influence in temporal point process

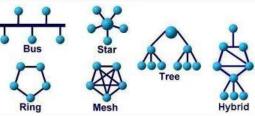
Why Parametric

- Problem Complexity
 - $O(M^2) \alpha$'s to learn
 - Hundreds of millions of individuals
 - No sufficient historical events
 - Require multiple cascades
 - The successive event history needs to be segmented into a number of independent cascades in advance.



Why Parametric – cont.

- Dependency in Infectivity Matrix
 - α 's are closely related.



- A priori assumptions on the network topology limit the adaptive social networks of the approaches.
- Time-varying Infectivity
 - Learning separate α for each time interval or with time-dependent function, greatly increase problem complexity.

Parametric Model

- A compact model to parameterize the infectivity between individuals.
- Time-varying features
 - $O(M^2)$ \longrightarrow O(K)
 - Require only one cascades for learning
 - Features incorporate infectivity dependency
 - Simultaneously capture various network topologies
 - Time-varying infectivity

Definition

• For individual-pair (m, m') [Wolfe. et al. 2013, Li. et al. 2014]

$$\alpha_{m,m'} = \beta^T \mathbf{x}_{m,m'}(t)$$

Optimization problem:

$$\min_{\mu \ge 0, \beta \ge 0} - \mathcal{L}(\mu, \beta) + \lambda \|\beta\|_1$$

Non-differentiable

Select effective features and avoid overfitting

Optimization

$$\begin{split} \mu^{i+1}, \beta^{i+1} &= \operatorname{argmin}_{\mu \geq 0, \beta \geq 0} - \mathcal{L}_{\rho}(\mu, \beta, \mathbf{z}^{i}, \mathbf{u}^{i}), \\ \mathbf{z}^{i+1} &= S_{\lambda/\rho}(\beta^{i+1} + \mathbf{u}^{i}), \\ \mathbf{u}^{i+1} &= \mathbf{u}^{i} + \beta^{i+1} - \mathbf{z}^{i+1}. \end{split}$$

O(N * K + M) $O(N^2 + M^2)$

Complexity:

Multi-dimensional Hawkes

Para-Hawkes

 ℓ_2

Time-varying Features

- Individual feature
 - Instant self-property of each individual.

in(i)

 $i (\mathcal{I}^{(v)})$

 $i \xrightarrow{(v)} j$

 $i \stackrel{(v,v')}{\longleftrightarrow} i$

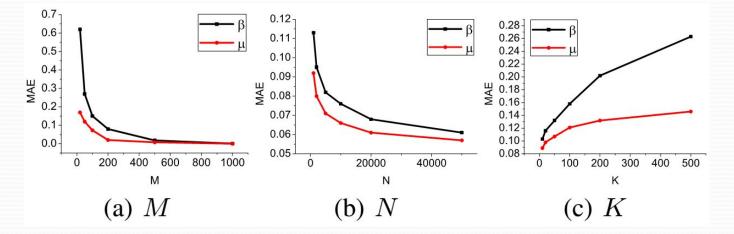
limeline

Pattern counting

- Dyadic feature
 - Instant relationship between each pair of individuals.
 i: j: j:

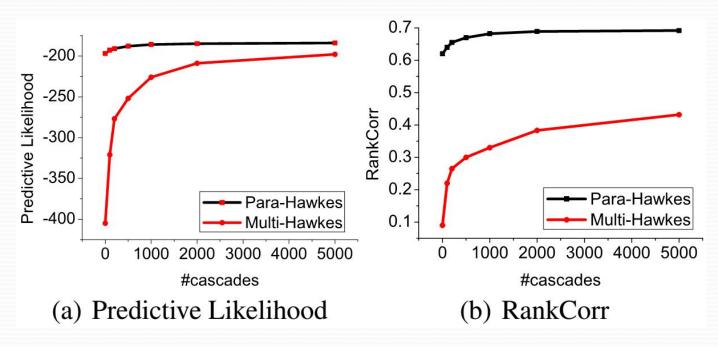
• Formation $\mathbf{x}_{m,m'}(t) = \{x(p)(t,\Delta t)|p\} \in \mathcal{P}_{m,m'}, \Delta t > 0\}$

Model Dimension Variation



• The impact of model dimension variation on μ is smaller than that on β .

Performance vs #Cascade



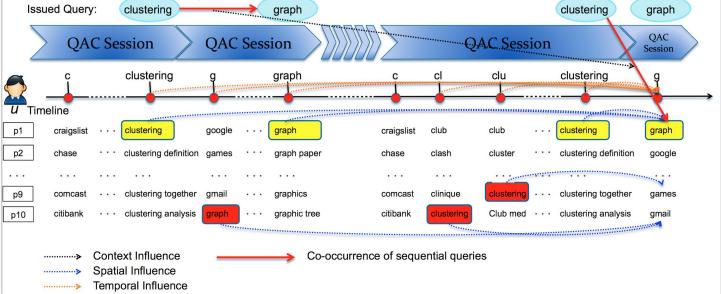
Works well without multiple cascades

Scenario - Query Auto-Completion

Top News

- · Palestinian suspect held over killed teens
- · Missouri set to execute man who killed ...
- Feinstein puts Obama on the spot over CIA's...
- Afghan soldier kills US general, wounds about...
- · Israel, Hamas to negotiate new Gaza deal in...

Influence between Click Events in



- Influence between users' click choices across different QAC sessions arise from three representative factors:
 - context, position, temporal information.

Factorial Hawkes

• A univariate Hawkes process on each user's issued query sequence. Temporal Factor Spatial Factor $\lambda(t, \mathbf{p}) = u + \sum (t \mathbf{x} + (t)) k (t - t') + o k (|\mathbf{p} - \mathbf{p}'|))$

$$\lambda(t, \mathbf{p}) = \mu + \sum_{t' < t} \beta \mathbf{x}_{q',q}(t) \left[\kappa(t - t') + \alpha \kappa(|\mathbf{p} - \mathbf{p}'|) \right]$$
Contextual Factor
Pattern counting
$$\mathbf{x}_{q',q}(t) = \left[\left\{ x(p)(t, \Delta t) \middle| p \in \mathcal{P}_{q',q}, \Delta t > 0 \right\} \right]$$

• A set of contextual features is designed to describe the relationship between the content of a historical query q' and a current suggested query q.

Query Auto-Completion

Data/Platform	Hawkes	TDCM	RBCM	MPC	UBM	BSS			
Measured by MRR@Last									
OldQAC/PC	0.694	0.592	0.608	0.543	0.441	0.545			
OldQAC/MB	0.770	0.685	0.708	0.649	0.431	0.650			
NewQAC/PC	0.732	0.602	0.642	0.567	0.501	0.552			
NewQAC/MB	0.811	0.691	0.749	0.631	0.482	0.654			
Measured by MRR@All									
OldQAC/PC	0.612	0.538	0.554	0.464	0.467	0.531			
OldQAC/MB	0.671	0.611	0.629	0.564	0.471	0.524			
NewQAC/PC	0.664	0.578	0.602	0.522	0.508	0.572			
NewQAC/MB	0.754	0.628	0.676	0.592	0.521	0.554			

 $MRR = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{\operatorname{rank}_q}$

• RBCM > TDCM > RBCM > MPC, UBM, BBS

Strategy Selection

Data set	T & S & C	T & C	S & C	T & S					
Measured by MRR@Last									
OldQAC/PC	0.694	0.658	0.632	0.611					
OldQAC/MB	0.770	0.740	0.727	0.720					
NewQAC/PC	0.732	0.711	0.691	0.652					
NewQAC/MB	0.811	0.798	0.775	0.761					
Measured by MRR@All									
OldQAC/PC	0.612	0.588	0.570	0.559					
OldQAC/MB	0.671	0.649	0.638	0.634					
NewQAC/PC	0.664	0.646	0.625	0.611					
NewQAC/MB	0.754	0.719	0.698	0.682					

• Factor importance: Context > Temporal > Spatial

Reference

- Rachel A. Hegemann and Erik A. Lewisi and Andrea L. BertozziiAn "Estimate & Score Algorithm" for simultaneous parameter estimation and reconstruction of missing data on social networks, 2013
- Liangda Li, and Hongyuan Zha. Dyadic Event Attribution in Social Networks with Mixtures of Hawkes Processes. CIKM 2013.
 - Emmanuel Bacry, Iacopo Mastromatteo, Jean-François Muzy, Hawkes processes in finance. 2015.
- Liangda Li, and Hongyuan Zha. Energy Usage Behavior Modeling in Energy Disaggregation via Marked Hawkes Process, AAAI 2015.
- Liangda Li, Hongbo Deng, Anlei Dong, Yi Chang, and Hongyuan Zha. Identifying and Labeling Search Tasks via Query-based Hawkes Processes. KDD 2014.
- Patrick O. Perry, and Patrick J. Wolfe. Point process modeling for directed interaction networks. In Journal of the Royal Statistical Society, volume 8, 821–849, 2013
- SK Karmaker Santu, Liangda Li, Dae Hoon Park. Yi Chang, Chenxiang Zha. Modeling the influence of popular trending events on user search behavior. WWW 2017.
- SK Karmaker Santu, Liangda Li, Yi Chang, Chenxiang Zha. Jim: Joint influence modeling for collective search behavior, CIKM 2018.
- Liangda Li, and Hongyuan Zha. Learning Parametric Models for Social Infectivity in Multi-dimensional Hawkes Processes. AAAI 2014.
- Liangda Li, Hongbo Deng, Jianhui Chen, Yi Chang. Learning Parametric Models for Context-Aware Query Auto-Completion via Hawkes Processes. WSDM 2017

Q&A

Thank you!

Appendix