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[ Typical real-world applications via TPP ]

Dyadic Event in temporal point process
Marked Event in temporal point process
Cross-domain Event in temporal point process

Parametric influence in temporal point process



gideonstrumpet
Is this legit? @Popehat @marcorandazza RT @tbuhi: @[me] then |

I§ would sue you because | have stated my tweets are not on record
comments
Popehat = Popehat .
gideonstrumpet @marcorandazza @tbuhl no, not legit. Ignorant
and preposterous

Mark W. Bennett 1z Bennett o
E Popehat @gideonstrumpet @marcorandazza @tbuhl "That's cray
Thi (@] is v t t
. What? »cira{(r Vas ing One is wont to say
® The effect that people have upon the beh ggg reorancea
p p p “} L MarkWBennett @Popehat @gideonstrumpet @tbuhl Moronic. You

. [ don't get to say something in public and then say "that's off the
® Behavior

® Active: retweet y ' ‘ g '. §
® Passive: virus infection \ ta.
® Why? i

2
& 7, o 3
® People interact & learn from the past s P ‘jf " s
e h - : ,.l >
® Where? .Te s "‘;:3
® Self-influence 2

® Mutual-influence iﬁ L- o= = j Lﬁ"

® Between individuals E-F===E 7
® How? n Rl Bl B

® Historical behaviors influence current behaviors




~Effect & Importance

Influenced individual

® Carry on the same type of behavior |
® Retweet the same post;

e Infected by the same virus.
® Respond with some other type of
behavior based on certain rules N

® The attack against one country may

cause its revenge to the attacker’s alhes @ - _' : .

e The results of current search task may
trigger a related search task in the next.

Tracking the diffusion of memes
Study the chain reactions




Issuesin Influence '

® Under different real-world

scenarios: w
® The specific influence are
diverse: @

Yo

® Each demands unique
solution using:
e Domain-specific knowledge:

e Observed data of specific type:
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Typical real-world applications via TPP

[ Dyadic Event in temporal point process J

Marked Event in temporal point process
Cross-domain Event in temporal point process

Parametric influence in temporal point process



Dyadic Event

Dyadic event: Timestamped interactions involving
pairs of actors

® Email communication, Conflict, Gang rivalry

More complicated than single actor events

® Influence between different pairs that shared the same actor

Actors of events can be unobserved — Dyadic Event
Attribution Problem (DEAP)

=



Data set

Conflict
e ACLED:

Gang rivalry

e LADP:

Email communication

e Rnron: http://www.cs.cmu.edu/~enron/


https://www.acleddata.com/
http://www.lapdonline.org/

//—\n,,
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Hawkes Process for DEAP

Introduce binary variable Z  to denote whether the n-th
event belongs to pair m

As(8) = pm(t —I—Zanmt—tl Z1

L <t m/

Expectation-maximization(EM) algorithm [Hegemann, etal, 203]

> Variational inference [Li, et al., 2013]
Additive Model

o parameterize each actor instead of each actor-pair
/ / / /
Hm = Hm1 5§ Hm?2 Om = Oyt + O,



““Scenario - Conflict Data

ACLED Crisis Analysis & Mapping

*Spatialkey ¢ +e

ersal Vind

{ Gonder.
\

EI[0daiya; Dilling

Boosaaso!

enderbeyla

Eventtype

Battle-No change of territory

Violence against civilians
Riots/Protests
Non-violent rebel activity

Typetext
Refugee Camp Closed

Refugee Settlement Open

Battle-Rebels overtake territory

Refugee Camp Open
Refugee Location Closed

Eventdate
Refugee Location Open

1DP Camp Open
24 Refugee Centre Closed
i
Lt talllabbl, gpono o
Drought Areas - Ethiopia 2003 - 2008 V2

Unhcrloc Database .
*

Count




number of events

. - r
- & mutual-excita Icts
3 T | T | T | T
2 e o
1 | ‘ | ; _
0 | ' ‘H J ‘ |
2007 2007.6 2008 2008.6 2009 20096 2010 20106 2011
timestamp

® One conflict will trigger future conflicts happen between the
same actor-pair;

® One conflict will trigger future conflicts that share at least one

actor.



AcCC

Attribution —

| Dataset [ Method | Top1 [ Top2 | Top3 | Top4 | Top5 |

Afghanistan | PFHP | 11.8% [ 17.0% | 20.2% | 21.8% | 24.2%
ESA 12.6% | 18.1% | 21.3% | 23.0% | 25.5%

LPPM | 13.4% | 20.9% | 23.8% | 25.4% | 26.5%

MHP | 14.6% | 23.3% | 26.8% | 28.6% | 30.1%

AMHP | 15.5% | 24.0% | 27.7% | 29.3% | 30.8%

| Random Guess [ 0.1% | 0.2% | 0.3% | 0.4% | 0.5%
Africa PFHP | 9.0% | 14.6% | 18.2% | 20.0% | 22.3%
ESA 9.9% | 157% | 19.5% | 21.3% | 23.7%

LPPM | 11.2% | 18.7% | 21.6% | 23.2% | 24.4%

MHP | 12.4% | 209% | 24.7% | 26.1% | 27.5%

AMHP | 13.1% | 21.5% | 25.4% | 26.9% | 28.1%

| Random Guess

[0.1% | 02% | 03% | 04% | 0.5% |

Afghanistan:
3384 dyadic events
68 actors
1010 actor-pairs

Africa:
52605 dyadic
events
3537 actors

1007 actor-pairs

- The underlying dependency network of actor-pairs in
real-world data has some special structures.



Indice of important actors:

~—Relational Graph

40 1

35

08 4-Civilans
N 0.7 6-Taliban
25 e 7-Afghanistan
Army
0.5 . o
= 9-Britain
u 04
. Army
|+ 1-Afghan
10 »
' Government
5% | L 16-Police Force
1 0

19-ISAF
® Relational graph among actors in Afghanistan Conflict data

® Most sequential conflicts in Afghanistan happened between
limited actor-pairs.
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Typical real-world applications via TPP

Dyadic Event in temporal point process

[ Marked Event in temporal point process ]

Cross-domain Event in temporal point process

Parametric influence in temporal point process



Marked Event

Mark: detailed information of the corresponding event
other than the temporal information.

Marks can also affect the influence between events.

Conflict Casualty
Earthquake Magnitude
Appliance usage Consumed energy

Search Query
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Influence Between Marked Events

Mark: /\

Event
Occurrence:

- Influence between normal events
—» : [nfluence between marked events

® How the occurrence and the mark of an event together
influence the occurrence and the mark of subsequent
events in the near future.



- Marked Hawkes Processes

Enables the modeling of the influence between marked

events
A= u+Z¢““ (t = tm,€m),

Directly modeling the relationship between marks and
occurrences of different events is difficult
Assumes a factorized form for the effect of the marks. [Bacry.
Et al. 2015 .. .. ..

L 8(L,€) = ¢ (E)
Utilize mark to better describe the existence and degree of
influence



B eratio Search Tack identfication

® Search task
® A set of queries serving for the same information need.
® Challenge

e Intertwined multiple intents in a user’s query sequence.
® Solution

Information need L W Search tasks identification
) Diffusion path tracking




sprint wireless Yahoo autos Bank of america

Chase
1 \ I
Jweline
Yahoo autos Expedia Bank of america
KBB cars wells fargo Chase ) Search Tasks

Timeline

CredIt cards

Chase Bank of america autotrader KBB cars
ueu’nca_irds
@-o-@f, B o o——o—o E—»
u. i e v Timeline
J
Labels: [N [ |

Autos  Banks Travel Network

® Consecutive or temporally-close queries issued many times are more like
semantically related, i.e., belong to one search task.



uence in Seml/

® Influence

® The occurrence of one query raises the probability that the other
query will be issued in the near future.

Temporally close TE i'”'q“e Temporally regular
query submission
query co-occurrence query co-occurrence

t)—,um+ Z lenﬁm’i

ml<t

® Issues:

@® Not all temporally-close query-pairs have the actual influence in
between.

@® Intractable to obtain an optimal solution of influence existence.



mantic Influence

® Concentrate on the influence existence between semantically
related queries.

@® Casting both [influence existence and |query-topic membershi
into latent Variable;. =
Rm,n,n’ — Ym,n K Ym,n’

The existence probability

The similarity of the

of pairwise influence memberships of two queries

—
Temporal : Textual
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“Experiments

0.84 :
I LDA-Hawkes Il L DA-Hawkes
0.83f W - W
[ Word-Related [ Word-Related
0.82f [ IBestlink-SVM | 0.8} [ IBestlink-SVM |1
081} — | ([EJQC-HTC | [1QC-HTC
: B Qc-wce _ B Qc-wce
g 0k Il Reg-Classifier|| | ~ el Il Reg—Classifier||
0.79}
0.78} 07l
0.77¢
0.76
(a) AOL (b) Yahoo

® Annotated search tasks in AOL & Yahoo.
® LDA-Hawkes > QC > SVM,Reg-Classifier > TW, W-R



Scenario - Energy Disaggregation
Energy disaggregation

/

® Take a whole home electricity signal and decompose it
into its component appliances.

® Essential for energy conservation
Fine-grained energy consumption data is not readily
available

® Require numerous additional meters installed on
individual appliances



~ User Energy Usage Behavior

One powerful cue for breaking down the entire
household’s energy consumption.

® how users perform their daily routines.
® how they share the usage of appliances.
® users’ habits in using certain types of appliances.

Influence between energy usage behaviors is the key to
infer the usage amount



nce in cne

® Why influence modeling is important?

> e

S —
o
o
-

— —ee —_—
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%

‘.‘h‘“"r,'( |
LT B
%

“

¢ & =

2

Timeline

® Influence between energy usage behaviors is hard to model
directly.

® Instead, model the influence among various appliances
across different time slots.



P
Marked Hawkes Processes

® Combine multivariate Hawkes processes and topic models

Am () = pm + Z ZYm’,l Z Z,n,kfm? 1,6/ Brm,m! k.,
t <t m/ k:,k’
The category The number of infectivity
membership parameters is O(M?K?>

® Enforce the sparsity of 8 by imposing lasso type of
regularization.




/ /

Energy Disaggregation Data Set

Smart*: 3 homes, 50 appliances
REDD: 6 homes, 20 appliances
Pecan: 450+ homes, 20 appliances



P —

MAE

0.5

0.45)

0.4

0.35]

0.3

Experiments

Total Living Base Kitchen Master Guest

(a) Smartx

0.65
06
0.55
05
<045
0.4
0.35
03
0.25

Electric Kitchen Light Wash/Dry Total

(b) REDD

I M-Hawkes-Sparse

[JHawk
S AFAMAP
0.3 EENIALM
0.25]
0.2
0.15

Total Living Kitchen Bedroom Bath

(c) Pecan

® M-Hawkes-Sparse > M-Hawkes > AFAMP, NIALM > Hawkes

® Only a limited number of dependencies exist between
appliances in real world energy consumption.
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Energy Usage Pattern

18
1eh (] 08 16
14 l 0.7 14
12 0.6 12 4]
0.5
10 10
] i ©
8 . 8
[} |
03 0.3
o . e =
0.2 i 0.2 4
4
. 0.1 - % 0.1 . 0.1
i - M anl == " ‘m . | ]
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
(a) Smartx (b) REDD (c) Pecan

® Smart*: refrigerator-microwave > refrigerator-toaster
® REDD: washer-dryer
® Pecan: refrigerator->microwave > microwave->refrigerator
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Typical real-world applications via TPP

Dyadic Event in temporal point process

Marked Event in temporal point process

[ Cross-domain Event in temporal point process ]

Parametric influence in temporal point process



__Influence between News anc

Yzl o(WE,).IDF(WE,).TF(WE,, W,).(k1 + 1)

Xi(WE,Wq) = |W |
i=1t  TF(Wg;, Wg) + k1.(1-b+b. avgqql) =
|WE| %
subject to Z w(Wg,) =1 E
i=1 s
How to influence? . &
: S
o Eventsacross domains g3
@ % | Donald Trump Wins
share the type Of data § = the Indiana Primaries
Influence type: g =
: N i
o Single Influence Eq
o Mutual Influence S
C}\(gb
S

eq

earch

Donald trump wins the
Indiana primaries

Panama Papers Leaked

7 o @
1“Panama paper leak” “Panama paper leak” “panama paper law firm

— il
i “panama paper politicians”
Hillary Clinton mocks

Donald trump over not
releasing tax returns

“trump tax return”

“Hillary Clinton tax return” “Romney Trump tax return”

A
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Cross-domain Influence TPP Model

© Independent Influence [Santu. et al. 2017]

Trend(E,t) = Mo+ Y o TatSim(Wg, W;)-e P4

=1

e Mutual Influence [Santu. et al. 2018]

Base Mutual Decay Impact

Influenck\lnﬂuencé\ Functioh\ Wn
k

Ait) =nj+ ) Vji f wj(t — s)gj(x)ej(ds X dx)
(—o0, 1)XR

J=1



Che

New 1lork
Cimes

NYTIMES.COM

YAHOQO!

SEARCH

Section | Total Avg. Avg. Total Avg.
# of Title Body # of Textual

events | Length | Length | queries Sim.

Movies 25 18.88 458.08 193,282 2.49

Sports 15 19.53 508.4 616,449 2.48

US 18 20.38 487.77 204,926 1.99

World 11 18.18 438.81 22,197 1.96

Table 1: Description of Event-Query Joint Dataset




“Experiments

Forecast the next most Rank queries based on future
influenced query influence
Metric | Methods | Movies | Sports | US World Metric | Method | Movies | Sports US World
NF 0.3281 0.4894% | 0.5717° | 0.3879 NF 0.5914 0.6693 0.8060 0.4465
AR 0.3879! | 0.4794 | 0.5400 | 0.4504 AR 0.6713% | 0.7440% | 0.7789 0.5200
ARD 0.2424 | 0.1965 | 0.4410 | 0.0443 ARD 0.2642 0.2977 0.4717 0.0827
Accuracy VAR 0.0023 | 0.0007 | 0.0029 | 0.0001 NDCG VAR 0.0087 0.0052 0.0136 0.0015
M 0.3413 0.3660 0.5408 0.47101! oM 0.6355 0.6976 0.81212 | 0.65551
JIM 0.3642 0.4688 0.5563 0.3035 JIM 0.6484 0.7204 0.8022 0.4809
JIM-G | 0.3820° | 0.5134" | 0.5843" | 045447 JIM-G | 0.6870' | 0.7650" | 0.8430' | 0.6062°
Table 9: Predicting the most frequent query in future NF 0.4349 0.5707 0.6491 0.3665
AR 0.4947% | 0.5908% | 0.6102 0.4130
ARD 0.1803 0.2191 0.3237 0.0538
RBO VAR 0.0042 0.0019 | 0.0045 0.0001
M 0.4562 0.5174 | 0.6509° | 0.46761
JIM 0.4782 0.5724 | 0.6436 0.3048

JIM-G | 0.5059' | 0.61721 | 0.6764! | 0.43322

Table 10: Predicting future frequencies for multiple queries.
(Wilcoxon’s signed rank test at level 0.05)
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Typical real-world applications via TPP

Dyadic Event in temporal point process
Marked Event in temporal point process

Cross-domain Event in temporal point process

[ Parametric influence in temporal point process J
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Why Pa ramEtrIC 10 * 10 network

0.40 1 —u=— Multi-Hawkes
0.35

0.30

Problem Complexity
® O(M?*) s tolearn o

e Hundreds of millions of individuals °%; .

RMSE

0.10
0.00

6 260 460 660 800 1000

® No sufficient historical events besscdes
® Require multiple cascades

e The successive event history needs to be segmented into a
number of independent cascades in advance.
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Why Parametric — cont.
71Tl

Dependency in Infectivity Matrix ° =
® (’s are closely related. A @

Me: Hybrid

® A priori assumptions on the network topology limit the
adaptive social networks of the approaches.

Time-varying Infectivity
® Learning separate (x for each time interval or with

time-dependent function, greatly increase problem
complexity.



arametric Model

A compact model to parameterize the infectivity
between individuals.

/V

Time-varying features
® O(M?) =y O(K)
® Require only one cascades for learning

® Features incorporate infectivity dependency
e Simultaneously capture various network topologies

® Time-varying infectivity
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e
Definition
® For individual-pair (m,m’) [Wolfe. et al. 2013, Li. et al. 2014}
Qmym = B Xonym ()
® Optimization problem:
miny>0,530 ~ £(u: 8) HALB[
® Non-differentiable

Select effective features and

avoid overfitting



Optimization

® Alternating direction method of multipliers (ADMM)
min,>o,5>0,2 = £(1, B) + Allz[|1, /
subjectto [ = z. 1

1 et i S
pttt il — argmin, o g>o0 — Lp(u, 8,z*,1u"),

Zi—l—l — S)\/p(,Bi+1 + uz’)’ 62

witl — ut 4 G+l _ i+l

O 15 + A1
' Multi-dimensional
- 2 2 -
® Complexity: O(N? + M7)
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Time-varying Features

® Individual feature in (1)

® Instant self-property of each individual. i O

® Dyadic feature i 2

® Instant relationship between each pair of o)
individuals. @ ;@ k.

7
imeline
P Pattern counting

.
® Formation X, (t) z[{a:(p) (t, At)|p]€ Pramrs At > 0}




- Model Dimension iation

674 i
—p 012 g 028

0.6 0.11] 0.26 p
0.51 = == 024l
0.101
- 0.22!
o ,, 009 , 0201
< 0.3' < il < 018'
= 55l = 0.08 S 0.6
0'1 k 0.071 0.14 ]
14 0.12.
o] 0.061 s
N . - 0051 : : oogdl—* .
0 200 400 600 800 1000 0 20000 40000 0 100 200 300 400 500

M

(a) M (b) N (c) K

® The impact of model dimension variation on #is
smaller than thaton 3.



~ Performance vs #

Predictive Likelihood

-200—-
-250—-
-300
-350

-400-

—e— Para-Hawkes
—o— Multi-Hawkes

1000 2000 3000 4000 5000
#cascades

(a) Predictive Likelihood

RankCorr

0.7
0.6
0.5/
0.4
0.3
0.2
0.1

—

—a— Para-Hawkes
—e— Multi-Hawkes

0 1000 2000 3000 4000 5000

#cascades

(b) RankCorr

® Works well without multiple cascades



Scenario - Query Auto-Completion

YAHOO | yaros
I yahoo search 1

yahoo.com

yahoo mail

yahoo finance

yahoo

yahoo maps

yahoo axis
Top News yahoo bookmarks ng Searches
« Palestinian suspect held over killed teens vahoo news today al Kombat o JayZ
» Missouri set to execute man who killed. . yahoo japan news Lall Jenner + Conan OBrien
« Feinstein puts Obama on the spot over ClA's. P P « Emma Stone « Selena Gomez
« Afghan soldier kills US general, wounds about. .. —_— S _— « Nina Dobrev o Oakland A's
« lIsrael. Hamas to negotiate new Gaza deal in... Today Towanew Thursday o Erin Andrews * Depression

77° 65° 81° 61° 82° 60°



different QAC Sessions

Issued Query: clustering === graph clustering graph

v

craigslist - - - google - - - craigslist ~ club club I lclustering I graph
chase + + = clustering definiton games - ** graph paper chase clash cluster + + * clustering definition ~ google

......................................................

- comcast - - - clustering together gmail -+« graphics comcast clinique - -« « clustering together games
p10 citibank -« - clustering analysis - -« - graphic tree citibank - Clubmed - - - clustering analysis gmail
............. ]

------------- > Context Influence —3 Co-occurrence of sequential queries
------------- > Spatial Influence
------------- > Temporal Influence

® Influence between users’ click choices across different QAC sessions arise from
three representative factors:

@ context, position, temporal information.



__Factorial Hawkes S

® A univariate Hawkes process on each user’s issued query

sequence. Temporal Factor | Spatial Factor

)=+ 3 fxg @)t — )+ ofllp — p'1)

t/ <t

Contextual Factor

- counive
Xy (1) =([2(p) (&, AL)|p € Pyr g0 At > 0}

@® A set of contextual features is designed to describe the relationship
between the content of a historical query q' and a current
suggested query q.




QUEfry/Ammpleﬂeﬂ/

Data/Platform | Hawkes | TDCM | RBCM
Measured by MRR@Last
OldQAC/PC 0.694 0.592 | 0.608 | 0.543 | 0.441 | 0.545
OIdQAC/MB | 0.770 0.685 | 0.708 | 0.649 | 0.431 | 0.650
NewQAC/PC | 0.732 0.602 | 0.642 | 0.567 | 0.501 | 0.552
NewQAC/MB | 0.811 0.691 | 0.749 | 0.631 | 0.482 | 0.654
Measured by MRR @ All
OIldQAC/PC 0.612 0.538 | 0.554 | 0464 | 0.467 | 0.531
OIdQAC/MB | 0.671 0.611 | 0.629 | 0.564 | 0.471 | 0.524
NewQAC/PC | 0.664 0.578 | 0.602 | 0.522 | 0.508 | 0.572
NewQAC/MB | 0.754 0.628 | 0.676 | 0.592 | 0.521 | 0.554

1
MRR= —
QI £

® RBCM > TDCM > RBCM > MPC, UBM, BBS

/

. rank,
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S By SciocHon———wes
Data set T&S&C | T&C | S&C | T&S
Measured by MRR @Last
OIldQAC/PC 0.694 0.658 | 0.632 | 0.611
OldQAC/MB 0.770 0.740 | 0.727 | 0.720
NewQAC/PC 0.732 0.711 | 0.691 | 0.652
NewQAC/MB 0.811 0.798 | 0.775 | 0.761

Measured by MRR@ All

OIldQAC/PC 0.612 0.588 | 0.570 | 0.559
OIldQAC/MB 0.671 0.649 | 0.638 | 0.634
NewQAC/PC 0.664 0.646 | 0.625 | 0.611
NewQAC/MB 0.754 0.719 | 0.698 | 0.682

® Factor importance: Context > Temporal > Spatial
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Thank you!
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Appendix




