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Event sequences in real world: Earthquakes

Figure 1: The locations and the intensities of the earthquakes from 1900
to 2017 [Ogata(1988)].
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Event sequences in real world: Social Networks

Figure 2: User behaviors on
nets [Farajtabar et al.(2015), Zhao et al.(2015)].
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Event sequences in real-world: Patient Flows

Figure 3: The transition behaviors of patients among different care
units [Xu et al.(2016)a].
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Event sequences in real world: Conflicts

Figure 4: The Afghan war diary (AWD) in 320
weeks [Zammit et al.(2012)].
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Event sequence modeling

I Earthquakes

I Social networks

I Patient flow

I Conflicts

I Financial trades

I Taxi transports

I Online shopping

I ...

Asynchronous and interdependent event
sequences: s = {(ti , di , fi )}Ii=1

I Time stamps: ti ∈ [0,T ].

I Entities (event types): di ∈ D = {1, ...,D}.
I Optional Marks (features): fi ∈ RD .
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Fig. 1. Asynchronously and interdependently generated high dimensional event data are fundamentally different from i.i.d. and time-series
data. First, observations for each dimension can be collected at different time points; Second, there can be temporal dependence as well
as cross-dimensional dependence. In contrast, the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the
figure, different marks indicate potentially different values or features of an observation.

for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-

2

7 / 54



Event sequence modeling

I Earthquakes

I Social networks

I Patient flow

I Conflicts

I Financial trades

I Taxi transports

I Online shopping

I ...

Asynchronous and interdependent event
sequences: s = {(ti , di , fi )}Ii=1

I Time stamps: ti ∈ [0,T ].

I Entities (event types): di ∈ D = {1, ...,D}.
I Optional Marks (features): fi ∈ RD .

time 

dim. 1 

dim. 2 

dim. 3 

asynchronous and interdependent data 

red arrows indicate dependency 

Fig. 1. Asynchronously and interdependently generated high dimensional event data are fundamentally different from i.i.d. and time-series
data. First, observations for each dimension can be collected at different time points; Second, there can be temporal dependence as well
as cross-dimensional dependence. In contrast, the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the
figure, different marks indicate potentially different values or features of an observation.

for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-

2

7 / 54



Event sequence modeling

I Earthquakes

I Social networks

I Patient flow

I Conflicts

I Financial trades

I Taxi transports

I Online shopping

I ...

Asynchronous and interdependent event
sequences: s = {(ti , di , fi )}Ii=1

I Time stamps: ti ∈ [0,T ].

I Entities (event types): di ∈ D = {1, ...,D}.
I Optional Marks (features): fi ∈ RD .

time 

dim. 1 

dim. 2 

dim. 3 

asynchronous and interdependent data 

red arrows indicate dependency 

Fig. 1. Asynchronously and interdependently generated high dimensional event data are fundamentally different from i.i.d. and time-series
data. First, observations for each dimension can be collected at different time points; Second, there can be temporal dependence as well
as cross-dimensional dependence. In contrast, the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the
figure, different marks indicate potentially different values or features of an observation.

for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-

2

7 / 54



Event sequence modeling

time 

dim. 1 

dim. 2 

dim. 3 

asynchronous and interdependent data 

red arrows indicate dependency 

Fig. 1. Asynchronously and interdependently generated high dimensional event data are fundamentally different from i.i.d. and time-series
data. First, observations for each dimension can be collected at different time points; Second, there can be temporal dependence as well
as cross-dimensional dependence. In contrast, the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the
figure, different marks indicate potentially different values or features of an observation.

for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-

2

Prob 1: 
Learn triggering pattern (or 
called Granger causality) 
among events

Prob 2: 
Learn clusters of event 
sequences

Prob 3: 
Predict future events

Prob 3:
Predict 
future events

time 

dim. 1 

dim. 2 

dim. 3 

asynchronous and interdependent data 

red arrows indicate dependency 

Fig. 1. Asynchronously and interdependently generated high dimensional event data are fundamentally different from i.i.d. and time-series
data. First, observations for each dimension can be collected at different time points; Second, there can be temporal dependence as well
as cross-dimensional dependence. In contrast, the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the
figure, different marks indicate potentially different values or features of an observation.

for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-

2

Prob 1: 
Learn triggering pattern (or 
called Granger causality) 
among events

Prob 2: 
Learn clusters of event 
sequences

Prob 3: 
Predict future events

Prob 3:
Predict 
future events

time 

dim. 1 

dim. 2 

dim. 3 

asynchronous and interdependent data 

red arrows indicate dependency 

Fig. 1. Asynchronously and interdependently generated high dimensional event data are fundamentally different from i.i.d. and time-series
data. First, observations for each dimension can be collected at different time points; Second, there can be temporal dependence as well
as cross-dimensional dependence. In contrast, the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the
figure, different marks indicate potentially different values or features of an observation.

for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
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where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
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for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-
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for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-
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for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-
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for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-
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for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-
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for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-
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for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
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lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-
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Temporal point processes: Intensity functions

I Event sequence: s = {(ti , di )}Ii=1, di ∈ D = {1, ...,D}.
I D-dimensional counting processes: N = {Nd(t)}Dd=1.

Nd(t) is the number of type-d events occurring till time t.

{ Intensity 
Function

{ Intensity 
Function

I Intensity function: The expected instantaneous happening
rate of type-d events given historical observations.

λd(t) =
E[dNd(t)|Htlast ]

dt
, Htlast = {(ti , di )|ti ≤ tlast , di ∈ D}.
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Intensity functions and conditional probabilities

I Intensity function: The expected instantaneous happening
rate of type-u event given the history Htlast .

λd(t) =
E[dNd(t)|Htlast ]

dt
=

p(t, d |Htlast )

1− F (t|Htlast )
.

I p(t, d |Htlast ): the conditional probability density function
(pdf) that type-d event happens at time t given history.

I F (t|Htlast ): the conditional probability that there is at least
one event happening in (tlast , t] given history.
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Intensity functions and conditional probabilities
The overall intensity is

λ(t) =
D∑

d=1

λd(t)

=
D∑

d=1

p(t, d |Htlast )

1− F (t|Htlast )
=

p(t|Htlast )

1− F (t|Htlast )

=

dF (t|Htlast
)

dt

1− F (t|Htlast )
= − d

dt
log(1− F (t|Htlast )).

(1)

Therefore we have

F (t|Htlast ) = 1− exp
(
−
∫ t
tlast

λ(s)ds
)
, (2)

p(t|Htlast ) = λ(t) exp
(
−
∫ t
tlast

λ(s)ds
)
, (3)

p(t, d |Htlast ) = λd(t) exp
(
−
∫ t
tlast

λ(s)ds
)
, (4)

p(d |t,Htlast ) = λd (t)
λ(t) . (5)
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Learning TPPs

I The key of learning a temporal point process {Nd}Dd=1 is
parametrizing and estimating its intensity functions, i .e.,
{λd(t; θ)}Dd=1.

I Given a TPP model {λd(t; θ)}Dd=1, the common learning
strategies include:

I Maximum likelihood estimation.
I Least-square estimation.
I Discriminative learning.

I The convergence of MLE and that of LS are guaranteed.
They can achieve unbiased estimation of intensity function.

I Recently, the reinforcement learning of temporal point
processes is considered in [Li et al.(2018)].
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Learning TPPs: MLE
Given an event sequence, i .e., s = {(ti , ui )}Ii=1, we can write the
likelihood function as

L(s; {λd}Dd=1) =
In∏
i=1

p(ti , di |Hti−1)× (1− F (T |HtI ))

Eqs.(2,4)
=

I∏
i=1

λdi (ti ) exp

(
−
∫ ti

ti−1

λ(s)ds

)
× exp

(
−
∫ T

tI

λ(s)ds

)

=
I∏

i=1

λdi (ti )× exp

(
−
∫ T

0
λ(s)ds

)
.

(6)

Accordingly, given a set of event sequences S = {sn}Nn=1, we can
learn the TPP model {λd(t)}Dd=1 by maximum likelihood
estimation (MLE) [Zhou et al.(2013), Xu et al.(2016)]:

min
{λd}Dd=1

−
∑
s∈S

log L(s; {λd}Dd=1) + αR({λd}Dd=1), (7)
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Learning TPPs: Least-Square (LS) Estimation

The idea of least-square estimation is very straightforward —
fitting the observed counting processes via the integral of intensity
functions [Wang et al.(2016)]:

min
{λd}Dd=1

I∑
i=1

D∑
d=1

[
N̂d(ti )−

∫ ti

0
λd(s)ds

]2
. (8)

Because the variance V[Nd(t)−
∫ t

0 λd(s)ds] ∼ O(t2), the work
in [Xu et al.(2017)b] further modifies the objective function as

min
{λd}Dd=1

I∑
i=1

D∑
d=1

1

t2
i

[
N̂d(ti )−

∫ ti

0
λd(s)ds

]2
. (9)
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Learning TPPs: Least-Square (LS) Estimation
Or, we can define a contrast function [Bacry et al.(2017)a]:

C ({λd}) =
D∑

d=1

∫ T

0
λ2
d(s)ds − 2

∫ T

0
λd(s)dN̂d(s), (10)

and learn the TPP by minizing the expectation of the contrast
function (fitting the empirical intensity function directly under L2

error) [Bacry et al.(2017)a, Eichler et al.(2017)]:

arg min
{λd}Dd=1

E[C ({λd})]

= arg min
{λd}Dd=1

D∑
d=1

E[(λd(t)− λ̂d(t))2],
(11)

The empirical intensity function is the differential of discretized
counting process:

λ̂d(t) =
N̂d(t + ∆t)− N̂d(t)

∆t
, (12)
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Learning TPPs: Discriminative Learning

Sometimes, the data are insufficient to estimate likelihood and the
main task is predict event types given timestamps, we can consider
the discriminative learning of TPPs — maximizing the conditional
probability p(d |t,Htlast ) given observations.

max
{λd}Dd=1

I∑
i=1

log p(di |ti ,Hti−1)

= max
{λd}Dd=1

I∑
i=1

log
λdi (ti )

λ(ti )

(13)

When λd(t) = exp(fd(t)), where fd(t) is an arbitrary function
(e.g ., a neural network), Eq. (13) corresponds to a softmax
regression problem [Xu et al.(2016)a].
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log p(di |ti ,Hti−1)

= max
{λd}Dd=1

I∑
i=1

log
λdi (ti )

λ(ti )

(13)

When λd(t) = exp(fd(t)), where fd(t) is an arbitrary function
(e.g ., a neural network), Eq. (13) corresponds to a softmax
regression problem [Xu et al.(2016)a].
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Gradient-based learning

I All the learning strategies above are rely on gradient-based
learning.

I For some typical TPP models like Hawkes processes, the MLE
can be achieved by an EM algorithm, which corresponds to
projected gradient descent, and the LS estimation have closed
form solutions.

I When the observed event sequences are independent, we can
apply min-batch optimization.

I When the intensity function at time t is mainly influenced by
the historical events in [t −∆t, t), which is common in
practice, we can apply a sliding window to each sequence, and
define min-batch on the corresponding sub-sequences.
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1. Real-world event sequences
2. Temporal point processes and intensity functions
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Simulation of TPPs: Ogata’s modified thinning algorithm

I Given a predefined or pre-trained TPP {λd}Dd=1, we can
simulate new sequences and predict future behaviors.

I At time t, we need to find out where to place the next point
ti > t and which type di ∈ D it is.

I Ogata’s modified thinning algorithm [Ogata(1981)] has
been widely used to simulate sequences.

I The basic idea is

1. Simulate a homogeneous Poisson process on some interval
[t, t + L(t)] for some chosen distance function L(t). The
intensity of the Poisson process satisfies
m(t) ≥ sups∈[t,t+L(t)] λ(s).

2. Thin out the points that are too many according to the real

λ(t), e.g ., keep a point at ti with probability λ(ti )
m(t) .
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Simulation of TPPs: Ogata’s modified thinning algorithm

Given a TPP model {λd}Dd=1, we can simulate an event sequence
in [0,T ] using the following steps:

1. Set t = 0, i = 0

2. Repeat till t > T :
I Compute L(t) and a constant intensity m(t) in [t, t + L(t)].
I Simulate a Poisson process: ∆t ∼ exp(m(t)), u ∼ Unif[0, 1].

I If ∆t < L(t) and t + ∆t < T and u ≤ λ(t + ∆t)

m(t)︸ ︷︷ ︸
thinning criterion

:

i = i + 1,
ti = t + ∆t. (a new time stamp)

di ∼ [λ1(ti )
λ(ti )

, ..., λD (ti )
λ(ti )

]. (a new event type)
I t = t + min({L(t),∆t}).

3. Output s = {(ti , di )}Ii=1.
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Simulation of TPPs: Prediction

Given a TPP model {λd}Dd=1 and its observations in [0,T ], we can
make predictions for the events in the future, (T ,T + ∆t].

I If ∆t is very small, we can make instantaneous predictions on
the probability of type-d event:

p(d |T + ∆t,HT ) =
λd(T + ∆t)

λ(T + ∆t)
. (14)

I If ∆t is large, we can make long-term predictions on the
expected number of type-d events in (T ,T + ∆t] by
simulation:

1

K

K∑
k=1

(N̂
(k)
d (T + ∆t)− Nd(T )). (15)
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Hawkes process

Homogeneous Poisson process:

λd(t) = µd (16)

Simple, but memoryless...

Hawkes process: model the self- and mutually-triggering patterns
hidden in event sequences explicitly [Hawkes(1971), Liniger(2009)].
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Hawkes process
The intensity functions of a D-dimensional Hawkes process,
denoted as HP(µ,Φ), are

λd(t) = µd︸︷︷︸
exogenous

+
∑D

v=1

∫ t

0
φdv (t, s)dNv (s)︸ ︷︷ ︸

endogenous triggering

= µd +
∑

ti<t
φddi (t, ti )

(17)

I µ = [µd ] ≥ 0: exogenous fluctuation of the system.

I
∑

ti<t φddi (t, ti ): endogenous triggering term caused the
system’s history.

I Φ = [φdv (t, s) ≥ 0], s ≤ t: impact functions, representing
the influence of type-v event at time s on type-d event at
time t.

I φdd(t, s): self-triggering pattern.
I φdv (t, s), d 6= v : mutually-triggering pattern.
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Hawkes process: parametrization strategies

I We often assume that the impact functions are shift-invariant:
φdv (t, s) = φdv (t − s).

I The widely-used impact functions include:

1. Exponential impact function [Zhou et al.(2013)]:

φdv (t) = adv exp(−wt). (18)

2. Basis representation [Xu et al.(2016)]:

φdv (t) =
M∑

m=1

amdvκm(t). (19)

I Accordingly, the parameters of Hawkes process include the
exogenous fluctuations µ = [µd ] and the parameters of the
impact functions A = [amdv ].
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Hawkes process

Hawkes process is important because

I Connections with real-world scenarios.

I Well-studied stationary properties.

I Explicit representation of Granger causality.

I High efficiency on learning.

I High efficiency on simulation.

I Superposition properties and robustness to data sparsity.
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Connections with real-world scenarios

(a) Earthquakes (b) Social networks

(c) Patient flow (d) Conflicts

Figure 5: Illustrations of event sequences modeled by Hawkes processes.
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Explicit representation of Granger causality
The impact functions not only decides the stationary of Hawkes
processes but also provide us with an explicit representation of
Granger causality graph of event types [Xu et al.(2016)].

Scene Entities Sequences Task

Patient admission Diseases Patients’ admissions Disease network
Job hopping Companies Employee’s job history Company network

Social network Users Users’ interactions User network

time 

dim. 1 

dim. 2 

dim. 3 

asynchronous and interdependent data 

red arrows indicate dependency 

Fig. 1. Asynchronously and interdependently generated high dimensional event data are fundamentally different from i.i.d. and time-series
data. First, observations for each dimension can be collected at different time points; Second, there can be temporal dependence as well
as cross-dimensional dependence. In contrast, the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the
figure, different marks indicate potentially different values or features of an observation.

for large networks.
Our contributions. In this paper, we present a novel

online change-point detection framework tailored to multi-
dimensional intertwined event data streams over networks
(or conceptual networks) tackling the above challenges. We
formulate the problem by leveraging the mathematical frame-
work of sequential hypothesis testing and point processes
modeling, where before the change the event stream follows
one point process, and after the change the event stream
becomes a different point process. Our goal is to detect such
changes as quickly as possible after the occurrences. We
derive generalized likelihood ratio statistics, and present an
efficient EM-like algorithm to compute the statistic online
with streaming data. The EM-like algorithm is parameter-free
and can be implemented in a distributed fashion and, hence,
it is suitable for large networks.

Specifically, our contributions include the following:
(i) We present a new sequential hypothesis test and like-

lihood ratio approach for detecting changes for the event
data streams over networks. We will either use the Poisson
process as the null distribution to detect the appearance
of temporal independence, or use the Hawkes process as
the null distribution to detect the possible alteration of the
dependency structure. For (inhomogeneous) Poisson process,
time intervals between events are assumed to be indepen-
dent and exponentially distributed. For Hawkes process, the
occurrence intensity of events depends on the events that
have occurred, which implies that the time intervals between
events would be correlated. Therefore, Hawkes process can
be thought of as a special autoregressive process in time,
and multivariate Hawkes process also provides a flexible
model to capture cross-dimension dependency in addition
to temporal dependency. Our model explicitly captures the
information diffusion (and dependencies) both over networks
and time, and allows us to aggregate information for weak
signal detection. Our proposed detection framework is quite
general and can be easily adapted to other point processes.

In contrast, existing work on change-point detection for
point processes has also been focused on a single stream
rather than the multidimensional case with networks. These
work including detecting change in the intensity of a Poisson
process [9]–[11] and the coefficient of continuous diffusion
process [12]; detecting change using the self-exciting Hawkes
processes include trend detection in social networks [13];

detecting for Poisson processes using a score statistic [14].
(ii) We present an efficient expectation-maximization (EM)

like algorithm for updating the likelihood-ratio detection
statistic online. The algorithm can be implemented in a
distributed fashion due to is structure: only neighboring nodes
need to exchange information for the E-step and M-step.

(iii) We also present accurate theoretical approximation to
the false-alarm-rate (formally the average-run-length or ARL)
of the detection algorithm, via the recently developed change-
of-measure approach to handle highly correlated statistics.
Our theoretical approximation can be used to determine the
threshold in the algorithm accurately.

(iv) Finally, we demonstrate the performance gain of our
algorithm over two baseline algorithms (which ignore the
temporal correlation and correlation between nodes), using
synthetic experiments and real-world data. These two baseline
algorithms representing the current approaches for processing
event stream data. We also show that our algorithm is very
sensitive to true changes, and the theoretical false-alarm-rates
are very accurate compared to the experimental results.

Related work. Recently, there has been a surge of in-
terests in using multidimensional point processes for mod-
eling dynamic event data over networks. However, most of
these works focus on modeling and inference of the point
processes over networks. Related works include modeling
and learning bursty dynamics [5]; shaping social activity
by incentivization [15]; learning information diffusion net-
works [4]; inferring causality [16]; learning mutually exciting
processes for viral diffusion [17]; learning triggering kernels
for multi-dimensional Hawkes processes [18]; in networks
where each dimension is a Poisson process [19]; learning
latent network structure for general counting processes [20];
tracking parameters of dynamic point process networks [21];
and estimating point process models for the co-evolution
of network structure an information diffusion [22], just to
name a few. These existing works provide a wealth of tools
through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, only given the values of the up-to-date
model parameters, especially in high dimensional networks,
it is still not clear how to perform change detection based on
these models in a principled fashion.

Classical statistical sequential analysis (see, e.g., [23],
[24]), where one monitors i.i.d. univariate and low-

2

Prob 1: 
Learn triggering pattern (or 
called Granger causality) 
among events

Prob 2: 
Learn clusters of event 
sequences

Prob 3: 
Predict future events

Prob 3:
Predict 
future events

Prob 4:
More 
applications

(a) Observations (b) Hawkes process (c) Granger causality

Figure 6: Learning Granger causality graph based on Hawkes processes.

Theorem (Eichler et al. 2015)

For stationary Hawkes processes, v → u /∈ E
if and only if φuv (t, s) ≡ 0
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Explicit representation of Granger causality

Theorem ([Eichler et al.(2017)])

For a Hawkes process, v → d /∈ E if and only if φdv (t) ≡ 0

(a) Hawkes process (b) G(D, E)

Figure 7: The sparsity of impact functions indicates G (D, E).

Take MLE as an example [Zhou et al.(2013), Xu et al.(2016)]:

φdv = adv exp(−wt) : minµ,A≥0−
∑

s∈S log L(s;µ,A) + α‖A‖1,

φdv =
∑

m amdvκm(t) : minµ,A≥0−
∑

s∈S log L(s;µ,A) + α‖A‖1,2,
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Explicit representation of Granger causality
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Figure 8: The regularizer imposes sparsity on impact functions.

32 / 54



Explicit representation of Granger causality
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Figure 9: The learning of Granger causality graph is robust to model
misspecficiation.
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High efficiency on learning

I For the Hawkes processes with φdv (t) =
∑M

m=1 a
m
dvκm(t), if

{κm(t)}Mm=1 are predefined. Both MLE and LS correspond to
convex optimization.

I If {κm(t)}Mm=1 are fast-decay functions, e.g ., exponential
functions, we can truncate the history of each event and apply
SGD on the batch of events.

I It is easy to impose structures on the impact functions, adding
regularizers to the optimization problems.

I It is easy to take side information (features of events) into
account, further parametrizing exogenous intensity and impact
functions.
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Simulation: Acceleration of Ogata’s thinning method
For some specific Hawkes processes, we can accelerate their
simulations with the help of the recursive representation of
intensity functions.

λd(t) = µd +
∑

ti<t
addi exp(−w(t − ti )) (20)

If nothing happens in (t, t + ∆t]:

λd(t + ∆t) = µd +
∑

ti<t+∆t
addi exp(−w(t + ∆t − ti ))

= µd + exp(−w∆t)
∑

ti<t
addi exp(−w(t − ti ))

= µd + exp(−w∆t)(λd(t)− µd)

If there is one event (t ′, d ′) happening in (t, t + ∆t]:

λd(t + ∆t) = µd +
∑

ti<t+∆t
addi exp(−w(t + ∆t − ti ))

= µd + exp(−w∆t)(λd(t)− µd + add ′ exp(−w(t − t ′)))

35 / 54



Simulation: Acceleration of Ogata’s thinning method
For some specific Hawkes processes, we can accelerate their
simulations with the help of the recursive representation of
intensity functions.

λd(t) = µd +
∑

ti<t
addi exp(−w(t − ti )) (20)

If nothing happens in (t, t + ∆t]:

λd(t + ∆t) = µd +
∑

ti<t+∆t
addi exp(−w(t + ∆t − ti ))

= µd + exp(−w∆t)
∑

ti<t
addi exp(−w(t − ti ))

= µd + exp(−w∆t)(λd(t)− µd)

If there is one event (t ′, d ′) happening in (t, t + ∆t]:

λd(t + ∆t) = µd +
∑

ti<t+∆t
addi exp(−w(t + ∆t − ti ))

= µd + exp(−w∆t)(λd(t)− µd + add ′ exp(−w(t − t ′)))

35 / 54



Simulation: Acceleration of Ogata’s method

Recall Ogata’s simulation method:

1. Set t = 0, i = 0

2. Repeat till t > T :

I
(((((((((((hhhhhhhhhhh
Compute L(t) and m(t).

I Simulate a Poisson process: ∆t ∼ exp(λ(t)), u ∼ Unif[0, 1].
I If ∆t < L(t) and t + ∆t < T and u ≤ λ(t+∆t)

λ(t) :
i = i + 1,
ti = t + ∆t. (a new time stamp)

di ∼ [λ1(ti )
λ(ti )

, ..., λD (ti )
λ(ti )

]. (a new event type)
I t = t + ∆t.

3. Output s = {(ti , di )}Ii=1.

For the Hawkes processes with exponential impact functions,
the intensity always decays when nothing happens. Therefore,
we have

I L(t) can be ∞, and m(t) = sups∈[t,t+L(t)] λ(t) = λ(t).
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Simulation: Hawkes process and branch process

Furthermore, Hawkes process can be viewed as a branch
process [Møller et al.(2006), Farajtabar et al.(2014)], whose
intensity functions can be represented as the superposition of
Poisson processes’ intensity functions.

Exogenous  
Poisson process

Endogenous  
Poisson process

Generation 0

Generation 1

Generation 2

Generation 3

ϕ□◯ ϕ◯△ ϕ◯◯

ϕ△□ ϕ□◯ ϕ◯◯

ϕ□◯ϕ△□

Endogenous  
Poisson process

Endogenous  
Poisson process

Figure 10: Hawkes process and branch process.
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Simulation based on branch clustering method

For the Hawkes process with λd(t) = µd +
∑

ti<t φdd ′(t − ti ):

1. Simulate S0 = {(t0
i , d

0
i )}I0i=1 via a D-dimensional

homogeneous Poisson process Poisson({µd}Dd=1) in [0,T ].

2. Set S = S0.

3. For the k-th generation, k = 1, ...,K :
I Set Sk = ∅.
I For (tk−1

i , dk−1
i ) ∈ Sk−1:

I Simulate a sequence s via a D-dimensional inhomogeneous
Poisson process Poisson({φ

ddk−1
i

(t)}Dd=1) in [tk−1
i ,T ].

I Sk = Sk ∪ s.

I S = S ∪ Sk .

4. Output S.
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Simulation: Comparisons
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Figure 11: Comparisons for different simulation methods on runtime.
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Superposition property and its benefits
Given Nk(t) ∼ HP(µk ,Φ), k = 1, ...,K , how to Φ = [φdv (t)]?

I Multi-source+MHP: Treat observed sequences as independent
samples and learn {HP(µk ,Φ)}Kk=1 accordingly.

Theorem (Superposition property [Xu et al.(2017)b])
For K independent Hawkes processes, i .e., Nk(t) ∼ HP(µk ,Φ),
k = 1, ...,K, their superposition is still a Hawkes process, where
N(t) =

∑K
k=1 N

k(t) and N(t) ∼ HP(
∑K

k=1 µ
k ,Φ).

I Superposition+HP: Superpose observed sequences and learn a
single HP(µ,Φ).

}
Superposition

HP(μ1, Φ)

HP(μ2, Φ)

HP(μ3, Φ)

HP(∑
i

μi, Φ)

Figure 12: Learning superposed Hawkes processes.
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Superposition property and its benefits

1. Multi-source+MHP: Treat observed sequences as independent
samples and learn {HP(µk ,Φ)}Kk=1 accordingly.

2. Superposition+HP: Superpose observed sequences and learn a
single HP(µ,Φ).

Theorem ([Xu et al.(2017)b])
For K D-dimensional Hawkes processes with φdv (t) =

∑
m amdvκm(t),

i .e., HP(µk ,A), k = 1, ...,K, suppose that

I Each observed sequence has I events;

I The parameters are bounded as ‖µk‖2
2 ≤ Bµ and ‖A‖2

F ≤ BA;

I The upper bound of ‖
∑K

k=1 µ
k‖2

2 is denoted as BΣµ.

The bound on the excess risk of Superposition+HP is tighter if

BΣµ ≤KBµ + D(K + D)Bµ log
(

1 +
KI

D(K + D)

)
− D(1 + D)Bµ log

(
1 +

KI

D(1 + D)

)
.

(21)
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Typical Cases

For Nk(t) ∼ HP(µk ,Φ), k = 1, ...,K

Lemma (Typical Infeasible Condition)

If µ1 = µ2 = ... = µK , the Multi-source+MHP strategy has a
tighter bound of excess risk.

Lemma (Typical Feasible Condition)

If 〈µk ,µk ′〉 = 0 for all k 6= k ′, the Superposition+HP strategy
has a tighter bound of excess risk.
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Benefits from superposed Hawkes processes
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Figure 13: Comparisons based on LS and MLE, respectively.

Using superposition-based learning strategy, we can enhance the
robustness to the problem of data insufficiency.
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Outline

I Part I: Basics and typical models for TPPs
1. Real-world event sequences
2. Temporal point processes and intensity functions
3. Classic learning strategies
4. Simulation and prediction
5. Hawkes processes
6. Open source packages

I Part II: Deep networks for temporal point processes

I Part III: Temporal point processes in practice
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Open source packages

Some toolboxes have been developed for TPPs.

I Tick [Bacry et al.(2017)b]
https://x-datainitiative.github.io/tick/index.html

I THAP [Xu and Zha(2017)b]
https://github.com/HongtengXu/Hawkes-Process-Toolkit

I PoPPy [Xu (2018)]
https://github.com/HongtengXu/PoPPy
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Tick

A machine learning library for Python 3.

I The core functions are implemented by C language.

I Linear models, point processes, survival analysis.

I Integrate some classic Hawkes process models.

I Implement many optimization solvers

I Support multi-CPU computation

46 / 54



THAP
THAP: A MATLAB Toolboxes for HAwkes Processes and its
variants.

Data

Format Conversion

Preprocessing

Simulation

Thinning methods

Branch clustering

Analysis

Granger causality

Clustering structure

Help

Function reference

Handbook of the tool

Model

Parametric Hawkes

Nonparametric 
Hawkes

Variants of Hawkes

Basis representation

Ordinary differential equation

Time series-based method

Mixture of Hawkes

Time-varying Hawkes

Visualization

Data statistics

Intensity plot

Impact function plot

Granger causality

Clustering structure

Learning result plot

THAP: A toolkit of Hawkes processes

Model-based methods

Feature-based methods

Maximum likelihood

Cumulants estimation

Version information
Prediction result plot

Figure 14: The architecture of THAP.
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THAP: Functions and Applications
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Figure 15: Visualization of typical functions achieved by THAP
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PoPPy

PoPPy: A Point Process PyTorch Toolbox

I It is an extension of THAP.

I Rich Functionality: data operations, learning, prediction,
simulation, visualization, ...

I High Flexibility: modular design of model, multiple loss
functions, regularizers, support numerical and categorical
features, ...

I High Scalability: support GPU computations
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PoPPy: Flexible model design

Intensity function:

λd(t) = gλ

(
µ(d , fd , fs) +

∑
ti<t

φ(t, ti , d , di , fd , fdi )

)

= gλ

(
µ(d , fd , fs) +

∑
ti<t

M∑
m=1

am(d , di , fd , fdi )κm(t − ti )

)
.

(22)

Exogenous Intensity and Endogenous Impact:

µ(d , fd , fs) =


gµ(µd),

gµ(w>d fs),

gµ(f >d Wfs),

NN(d , fd , fs).

am(d , di , fd , fdi ) =



ga(addim),

ga(u>d ,mvdi ,m),

ga(w>d ,mfdi ),
ga(f >d Wmfdi ),
NN(d , di , fd , fdi ).
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PoPPy: Flexible model design

(a) Exponential (b) Rayleigh kernel (c) Gaussian kernel

(d) Powerlaw kernel (e) Gate kernel (f) Multi-Gaussian

Figure 16: Examples of decay kernels and their integration values.
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PoPPy: Flexible data operations

+

+

=

=

….

Stitching (random or feature-based)

Superposing (random or feature-based)

Aggregating

Batch Sampling

Figure 17: Typical data operations.
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Summary

I Temporal point processes have been widely used to describe
the dynamic mechanisms hidden in real-world event sequences.

I The key of TPPs is modeling their intensity functions.

I The learning and the simulation of TPPs are flexible and
theoretically-supportive.

I Hawkes processes are powerful to model the self- and
mutually-triggering patterns among different event types,
which have many useful properties for practical applications.
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