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Event sequences in real world: Earthquakes

Figure 1: The locations and the intensities of the earthquakes from 1900
to 2017 [Ogata(1988)].
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Event sequences in real world: Social Networks
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Figure 2: User behaviors on
nets [Farajtabar et al.(2015), Zhao et al.(2015)].
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Event sequences in real-world: Patient Flows

Coronary Anesthesia Medical Cardiac surgery Neonatal
ICU ICU ICU recovery ICU ICU

4 EIML]
Vil .
! ! |

v v
Time

|

Figure 3: The transition behaviors of patients among different care
units [Xu et al.(2016)a].
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Event sequences in real world: Conflicts

Baghl.
D Kunduz city E aghlan city
o o 15|
or
5 K} 7 10‘
) . j w
C Darreh-ye Bum - ? o il
’ : ° 20 Lon o 320
¥ 3
2,
s
BRI #
Lon % 320 ¢
3

Weekly growth rate

0.0% 05% 1.0% 1.5% 20% 2.5% 3.0%

Figure 4: The Afghan war diary (AWD) in 320
weeks [Zammit et al.(2012)].
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Event sequence modeling

Asynchronous and interdependent event

sequences: s = {(t;,d;, )} _;

» Earthquakes

» Social networks » Time stamps: t; € [0, T].

» Patient flow » Entities (event types): d; € D ={1,...,D}.
» Conflicts >

» Financial trades

v

i asynchronous and interdependent data
Taxi transports

Online shopping 1 ? T T/\T TmTT >

v

54



Event sequence modeling

Prob 1:

Learn triggering pattern (or
called Granger causality)
among events

asynchronous and interdependent data
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Event sequence modeling

Prob 1:

Learn triggering pattern (or
called Granger causality)
among events
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Event sequence modeling

Prob 1:

Learn triggering pattern (or
called Granger causality)
among events

asynchronous and interdependent data
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Event sequence modeling

Prob 1:

Learn triggering pattern (or
called Granger causality)
among events

asynchronous and interdependent data

pon
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Prob 2: Prob 3:
Learn clusters of event Predict
sequences future events

How to describe/represent event sequences quantitatively?
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Temporal point processes: Intensity functions

» Event sequence: s = {(t;,d;)}/_,, di € D={1,...,D}.
» D-dimensional counting processes: N = {Ny(t)}]_;.

Ng4(t) is the number of type-d events occurring till time t.

H |>
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Temporal point processes: Intensity functions
» Event sequence: s = {(t;,d;)}/_,, di € D={1,...,D}.

» D-dimensional counting processes: N = {Ny(t)}]_;.
Ng4(t) is the number of type-d events occurring till time t.

|1 e SR

11111 ,{gz.:,m N
EWERG .

» Intensity function: The expected instantaneous happening
rate of type-d events given historical observations.

E[dN,(t)|H
A(t) = "(dt)' el 31 (45, d)|t < e, s € DY,
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Intensity functions and conditional probabilities

» Intensity function: The expected instantaneous happening
rate of type-u event given the history H;,,.

E[de(t)’Htlast] p(t7 d|HtIast)

» p(t,d|Hy,,,): the conditional probability density function
(pdf) that type-d event happens at time t given history.

» F(t|H,,,): the conditional probability that there is at least
one event happening in (s, t] given history.
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Intensity functions and conditional probabilities
The overall intensity is

D
At) =D Aalt)
d=1
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Intensity functions and conditional probabilities
The overall intensity is

D
= Z)\d(t)

XD: t d|Htlast _ p(t|Ht/ast)

t|7_[t/ast) - F(t|Ht/ast)

d=1
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Intensity functions and conditional probabilities
The overall intensity is

D
At) =D Aalt)
d=1

D
— p(t’ d|Htlast) — p(t|Ht/ast)
d=1 1 - F(t|7_[tlast) 1 - F(t|Ht/ast)
dF(t‘HtIast) d
= —d_ = 7. Iog(l - F(t|Htlast))‘

1 - F(t|7_[tlast) dt
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Intensity functions and conditional probabilities
The overall intensity is

D
=> (1)
d=1
D
p(t’ d|Htlast) — p(t|Ht/ast) (]_)
- F(t|7_[tlast) 1 - F(t|Ht/ast)
dF(t\Ht,ast)

d
= W T log(1 — F(t/H4,,))-
last

Therefore we have
F(tlHep) =1 —exp (= fi /\(s)ds), 2)
p(t|%t/‘35t) - exp ( ftlast ) (3)
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Intensity functions and conditional probabilities
The overall intensity is

D
=> (1)
d=1

D

p(t’ d‘Htlast) — p(t|Ht/ast) (]_)
- F(t|7_[tlast) 1 - F(t|Ht/ast)
dF(t\Ht,ast)

d
= W T log(1 — F(t/H4,,))-
last

Therefore we have

F(t[Ha0) = 1= exp (= [ A(s)ds)), (2)
p(tHe.) = M) exp (= 1 As)ds ), (3)
p(t, dHy,) = Na(t)exp (= [ A(s)ds) (4)

P(d]t, M) = 345, (5)
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Learning TPPs

» The key of learning a temporal point process {Ny}5_, is
parametrizing and estimating its intensity functions, i.e.,

{Xa(t:0)}g-1-

14 /54



Learning TPPs

» The key of learning a temporal point process {Ny}5_; is
parametrizing and estimating its intensity functions, i.e.,
.o\\D
{Aa(t:0)} g1
» Given a TPP model {\4(t; 0)}]_;, the common learning
strategies include:

» Maximum likelihood estimation.
» Least-square estimation.
» Discriminative learning.

» The convergence of MLE and that of LS are guaranteed.

They can achieve unbiased estimation of intensity function.
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Learning TPPs

» The key of learning a temporal point process {Ny}5_; is
parametrizing and estimating its intensity functions, i.e.,
{Xa(t:0)} 1.

» Given a TPP model {\4(t; 0)}]_;, the common learning
strategies include:

» Maximum likelihood estimation.
» Least-square estimation.
» Discriminative learning.

» The convergence of MLE and that of LS are guaranteed.
They can achieve unbiased estimation of intensity function.

> Recently, the reinforcement learning of temporal point
processes is considered in [Li et al.(2018)].
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Learning TPPs: MLE

Given an event sequence, i.e., s = {(t;, u;)}!_;, we can write the
likelihood function as

In
L(S; {)‘d}gzl) = Hp(ti7 di‘Htifl) X (1 - F(T‘Ht/))

i=1

Fael24) lj)\d,.(t,-)exp (— /t,t_ll )\(S)d5> X exp (— /tlT )‘(S)d5> (6)
= iljl)\d,-(ti) X exp <— /OT)‘(S)dS) :

15 /54



Learning TPPs: MLE

Given an event sequence, i.e., s = {(t;, u;)}!_;, we can write the
likelihood function as

In
L(S; {)‘d}c?:l) = Hp(ti7 di‘Htifl) X (1 - F(T‘Ht/))

i=1

Fae ) lj)\d,.(t,-)exp (— /t,t_ll )\(S)d5> X exp (— /tlT )‘(s)d5> (6)
— iljl)\d,-(ti) X exp <— /OT)‘(S)dS) :

Accordingly, given a set of event sequences S = {s,}"V_,, we can
learn the TPP model {\4(t)}5_; by maximum likelihood
estimation (MLE) [Zhou et al.(2013), Xu et al.(2016)]:

min — % log L(s; {Aa}g-1) + aR({Aa}g-1). (7)
{)‘d}dzl seS
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Learning TPPs: Least-Square (LS) Estimation

The idea of least-square estimation is very straightforward —
fitting the observed counting processes via the integral of intensity
functions [Wang et al.(2016)]:

I D N )
min 303" [Al(e) - /O Aa(s)ds] (8)

D
Pataor 127 921

16 /54



Learning TPPs: Least-Square (LS) Estimation

The idea of least-square estimation is very straightforward —
fitting the observed counting processes via the integral of intensity
functions [Wang et al.(2016)]:

/

D N )
min ZZ[/\“/d(t,-)—/o Aal(s)ds] (8)

D
Pataor 127 921

Because the variance V[Ny(t) fo Ag(s)ds] ~ O(t?), the work
in [Xu et al.(2017)b] further modifies the objective function as
I by
min — Nd (ti) / Ad(s ds . 9)
SRR
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Learning TPPs: Least-Square (LS) Estimation

Or, we can define a contrast function [Bacry et al.(2017)a]:

D T ) T .
crah =3 /0 X3(s)ds — 2 /0 N(s)dflg(s),  (10)

and learn the TPP by minizing the expectation of the contrast
function (fitting the empirical intensity function directly under L2
error) [Bacry et al.(2017)a, Eichler et al.(2017)]:
arg min E[C({\4})]
{ d}dD:]_
D (11)
—arg min S E[(a() ~ Ma(0),

{)‘d}dzl d=1
The empirical intensity function is the differential of discretized
counting process:

. Ng(t + At) — Ng(t)

Ad(t) = At ) (12)
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Learning TPPs: Discriminative Learning

Sometimes, the data are insufficient to estimate likelihood and the
main task is predict event types given timestamps, we can consider
the discriminative learning of TPPs — maximizing the conditional

probability p(d|t,H,,) given observations.

I
maL.))( Z |Og p(df|tf) Ht,'_l)

{Adtdmr i
T (13)
Ag; (i)
= max log —
{/\d}gzl ; )\(tl)
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Learning TPPs: Discriminative Learning

Sometimes, the data are insufficient to estimate likelihood and the
main task is predict event types given timestamps, we can consider
the discriminative learning of TPPs — maximizing the conditional

probability p(d|t,H,,) given observations.

I
mag)( Z |Og p(di|tf) Ht,'_l)

{Adtdmr i
T (13)
A, (ti)
= max log —
{/\d}gzl ; )\(tl)

When Ay4(t) = exp(fy(t)), where fy4(t) is an arbitrary function
(e.g., a neural network), Eq. (13) corresponds to a softmax
regression problem [Xu et al.(2016)a].
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Gradient-based learning

» All the learning strategies above are rely on gradient-based
learning.

» For some typical TPP models like Hawkes processes, the MLE
can be achieved by an EM algorithm, which corresponds to
projected gradient descent, and the LS estimation have closed
form solutions.
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Gradient-based learning

» All the learning strategies above are rely on gradient-based
learning.

» For some typical TPP models like Hawkes processes, the MLE
can be achieved by an EM algorithm, which corresponds to
projected gradient descent, and the LS estimation have closed
form solutions.

» When the observed event sequences are independent, we can
apply min-batch optimization.

» When the intensity function at time t is mainly influenced by
the historical events in [t — At, t), which is common in
practice, we can apply a sliding window to each sequence, and
define min-batch on the corresponding sub-sequences.
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Simulation of TPPs: Ogata's modified thinning algorithm

» Given a predefined or pre-trained TPP {\4}]_;, we can
simulate new sequences and predict future behaviors.

» At time t, we need to find out where to place the next point
t; > t and which type d; € D it is.
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Simulation of TPPs: Ogata's modified thinning algorithm

» Given a predefined or pre-trained TPP {\4}]_;, we can
simulate new sequences and predict future behaviors.

» At time t, we need to find out where to place the next point
t; > t and which type d; € D it is.

» Ogata’s modified thinning algorithm [Ogata(1981)] has
been widely used to simulate sequences.
> The basic idea is
1. Simulate a homogeneous Poisson process on some interval
[t, t + L(t)] for some chosen distance function L(t). The
intensity of the Poisson process satisfies
m(t) > SUPselt,t4L(t)] A(s)-
2. Thin out the points that are too many according to the real

A(t), e.g., keep a point at t; with probability ’;f(tg.
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Simulation of TPPs: Ogata's modified thinning algorithm

Given a TPP model {\¢}5_,, we can simulate an event sequence
in [0, T] using the following steps:

1. Sett=0,i=0

2. Repeat till t > T:

» Compute L(t) and a constant intensity m(t) in [t,t + L(t)].
» Simulate a Poisson process: At ~ exp(m(t)), u ~ Unif[0, 1].
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Simulation of TPPs: Ogata's modified thinning algorithm

Given a TPP model {\¢}5_,, we can simulate an event sequence
in [0, T] using the following steps:
1. Sett=0,i=0
2. Repeat till t > T:
» Compute L(t) and a constant intensity m(t) in [t,t + L(t)].
» Simulate a Poisson process: At ~ exp(m(t)), u ~ Unif[0, 1].

At + At
» If At < L(t) and t + At < Tandu<(nIt))-

thinning criterion
i=i+1,
t; =t + At. (a new time stamp)
di ~ ):\1((1")),. . )‘/\D((t’))]. (a new event type)
» t=t+ min({L(t), At}).

3. Output s = {(t;,d;)}_

22 /54



Simulation of TPPs: Prediction

Given a TPP model {\¢}5_, and its observations in [0, T], we can
make predictions for the events in the future, (T, T + At].
> If At is very small, we can make instantaneous predictions on
the probability of type-d event:

M(T + At)

T+A =2 T

(14)
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Simulation of TPPs: Prediction

Given a TPP model {\¢}5_, and its observations in [0, T], we can
make predictions for the events in the future, (T, T + At].

> If At is very small, we can make instantaneous predictions on
the probability of type-d event:

M(T + At)

» If At is large, we can make long-term predictions on the
expected number of type-d events in (T, T + At] by
simulation:

K
Z (RS(T + At) — Ng(T)). (15)

>
||
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Hawkes process

Homogeneous Poisson process:

Ad(t) = pd (16)

Simple, but memoryless...

NN

Hawkes process: model the self- and mutually-triggering patterns
hidden in event sequences explicitly [Hawkes(1971), Liniger(2009)].
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Hawkes process

The intensity functions of a D-dimensional Hawkes process,
denoted as HP(u, ®), are

)\d(t) = iﬁ;d/ + Zf—l/o ¢dv(t7 S)de(S)

exogenous ( 17 )
endogenous triggering

= fd + Zt,-<t Pda; (¢, ti)

» 1= [pg] > 0: exogenous fluctuation of the system.

> > i<t Pda(t, ti): endogenous triggering term caused the
system's history.

> & = [¢pg,(t,s) > 0], s < t: impact functions, representing
the influence of type-v event at time s on type-d event at
time t.

> Paq(t,s): self-triggering pattern.
> dav(t,s), d # v: mutually-triggering pattern.
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Hawkes process: parametrization strategies

> We often assume that the impact functions are shift-invariant:
¢dv(t7 5) = ¢dv(t - 5)-
» The widely-used impact functions include:
1. Exponential impact function [Zhou et al.(2013)]:

bav(t) = ady exp(—wt). (18)

2. Basis representation [Xu et al.(2016)]:

M
a(t) = D agrm(t). (19)
m=1

» Accordingly, the parameters of Hawkes process include the
exogenous fluctuations p = [14] and the parameters of the
impact functions A = [a]] ].
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Hawkes process

Hawkes process is important because

» Connections with real-world scenarios.

v

Well-studied stationary properties.

v

Explicit representation of Granger causality.

v

High efficiency on learning.

v

High efficiency on simulation.

v

Superposition properties and robustness to data sparsity.

28 /54



Connections with real-world scenarios
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Figure 5: Illustrations of event sequences modeled by Hawkes processes.
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Explicit representation of Granger causality
The impact functions not only decides the stationary of Hawkes
processes but also provide us with an explicit representation of
Granger causality graph of event types [Xu et al.(2016)].

Scene Entities Sequences Task
Patient admission Diseases Patients’ admissions Disease network
Job hopping Companies | Employee’s job history | Company network
Social network Users Users' interactions User network
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Explicit representation of Granger causality

The impact functions not only decides the stationary of Hawkes
processes but also provide us with an explicit representation of
Granger causality graph of event types [Xu et al.(2016)].

Scene Entities Sequences Task
Patient admission Diseases Patients’ admissions Disease network
Job hopping Companies | Employee’s job history | Company network
Social network Users Users' interactions User network

asynchronous and interdependent data
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(b) Hawkes process
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Explicit representation of Granger causality

The impact functions not only decides the stationary of Hawkes
processes but also provide us with an explicit representation of
Granger causality graph of event types [Xu et al.(2016)].

Scene Entities Sequences Task
Patient admission Diseases Patients’ admissions Disease network
Job hopping Companies | Employee’s job history | Company network
Social network Users Users' interactions User network

o)

A
asynchronous and interdependent data

T ot @, YOI ¢ *

RS S TS L TOR B s S \ /
= S J r k A *®

A 1111 ! ; > \/T\/! )

(a) Observations (b) Hawkes process (c) Granger causality

Figure 6: Learning Granger causality graph based on Hawkes processes.
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Explicit representation of Granger causality

Theorem ([Eichler et al.(2017)])
For a Hawkes process, v — d ¢ £ if and only if ¢4,(t) =0

el

. N\
" \L ’\%
- =: > '\A/D

(a) Hawkes process (b) G(D,€)

/
1%

Figure 7: The sparsity of impact functions indicates G(D, £).
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Explicit representation of Granger causality

Theorem ([Eichler et al.(2017)])
For a Hawkes process, v — d ¢ £ if and only if ¢4,(t) =0

QSA. At) ’ \*
S S5
A . K ? PS

> \A/D

(a) Hawkes process (b) G(D,¢)

Figure 7: The sparsity of impact functions indicates G(D, £).

Take MLE as an example [Zhou et al.(2013), Xu et al.(2016)]:

bdv = adv exp(—wt) : min, a>o — Zses log L(s; p, A) + || A1,
Ddy = Zm ag:,'%m(t) : minp,,AZO - ZSES |og L(S; M, A)
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Explicit representation of Granger causality
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Explicit representation of Granger causality

—Heal ——MLE ——MLE-SGLP
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Figure 9: The learning of Granger causality graph is robust to model
misspecficiation.
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High efficiency on learning

» For the Hawkes processes with ¢4, (t) = Z%’:l ay km(t), if

{km(t)}M_, are predefined. Both MLE and LS correspond to
convex optimization.

> If {km(t)}M_, are fast-decay functions, e.g., exponential
functions, we can truncate the history of each event and apply

SGD on the batch of events.

> It is easy to impose structures on the impact functions, adding
regularizers to the optimization problems.

> It is easy to take side information (features of events) into
account, further parametrizing exogenous intensity and impact
functions.
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Simulation: Acceleration of Ogata’s thinning method

For some specific Hawkes processes, we can accelerate their
simulations with the help of the recursive representation of
intensity functions.

= fig + Z  2dd; exp(—w(t — t;)) (20)
If nothing happens in (t,t + At]:
)\d(t + At) = g + Zt-<t+At add; exp(—w(t + At — t';))

= lg + exp(—wAt) Zt,-<t agd, exp(—w(t — t;))
= pid + exp(—wAt)(Ad(t) — pa)
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Simulation: Acceleration of Ogata’s thinning method

For some specific Hawkes processes, we can accelerate their
simulations with the help of the recursive representation of
intensity functions.

= pid + Z  2dd; exp(—w(t — t;)) (20)
If nothing happens in (t,t + At]:
Ag(t + At) = pg + Zt,-<t+At add. exp(—w(t + At — t;))
= lg + exp(—wAt) Zt,-<t agd, exp(—w(t — t;))
= pid + exp(=wAt)(Ag(t) — pa)
If there is one event (t',d’) happening in (t,t + At]:
/\d(t + At) = Hd Zti<t+At
= pig + exp(—wAt)(\y(t) — pg + aga exp(—w(t — t')))

aqq, exp(—w(t + At — t;))
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Simulation: Acceleration of Ogata’s method

Recall Ogata's simulation method:
1. Sett=0,i=0
2. Repeat till t > T:

- M
» Simulate a Poisson process: At ~ exp(A(t)), u ~ Unif[0, 1].

» f At < L(t)and t+ At < T and v < A(;J(rt?t):
P=i+1,
t; = t + At. (a new time stamp)

d; ~ ’t\l((t’:”)) ey )‘)\D((tt’))] (a new event type)

> t=t+At.
3. Output s = {(t;, di)}_;.
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Simulation: Acceleration of Ogata’s method

Recall Ogata's simulation method:
1. Sett=0,i=0
2. Repeat till t > T:

» Compute—t{tyand m(
> Simulate a Poisson process: At ~ exp(A(t)), u ~ Unif[0, 1].
> If At < L(t)and t+ At < T and u < 250
i=i+1,
t; = t + At. (a new time stamp)
d; ~ ’\Al((tff)) yeees ’\)\D((tt’))] (a new event type)
> t=1t+ At

3. Output s = {(t;, di)}_;.
For the Hawkes processes with exponential impact functions,

the intensity always decays when nothing happens. Therefore,
we have

> L(t) can be 0o, and m(t) = supscpe,e41(e)) ME) = A1)
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Simulation: Hawkes process and branch process

Furthermore, Hawkes process can be viewed as a branch
process [Mgller et al.(2006), Farajtabar et al.(2014)], whose
intensity functions can be represented as the superposition of
Poisson processes’ intensity functions.

T T T T T Generation 0
Exogenous >

Poisson process

. . H G tion 1
Endogenous ! ! ' T eneration

Poisson process i \ !
| | : T T Generation 2
Endogenous . !

Poisson process -

\¢a0 :\¢DO

: . Generation 3
Endogenous . \\:_\\.
Poisson process

Figure 10: Hawkes process and branch process.
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Simulation based on branch clustering method

For the Hawkes process with A\g(t) = pig + > ;. Paar (t — ti):

1. Simulate S° = {(¢?, d,p)},{“:l via a D-dimensional
homogeneous Poisson process Poisson({4}5_;) in [0, T].

2. Set S =SY.
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Simulation based on branch clustering method

For the Hawkes process with A\y(t) = pig + > Paar (t — ti):

1. Simulate S° = {(¢?, d,p)},{“:l via a D-dimensional

homogeneous Poisson process Poisson({4}5_;) in [0, T].

2. Set S =89
3. For the k-th generation, k =1, ..., K:
» Set Sk =)

> For (tf71,df 1) e Sk1:
> Simulate a sequence s via a D-dimensional inhomogeneous
Poisson process Poisson({qﬁddg_l(t)}g:l) in [tF1, T
> S =S Us. '
» S=SUSk
4. Qutput S.
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Simulation: Comparisons

—=—FastThinning
—=—Thinning
Branch clustering

T

log Runtime (sec)
<)
o

50 100 150 200
Length of time window

Figure 11: Comparisons for different simulation methods on runtime.
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Superposition property and its benefits
Given N¥(t) ~ HP(u*, ®), k =1,...,K, how to ® = [¢4,(t)]?

» Multi-source+MHP: Treat observed sequences as independent
samples and learn {HP(p*, ®)}£_; accordingly.
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Superposition property and its benefits
Given N¥(t) ~ HP(u*, ®), k =1,...,K, how to ® = [¢4,(t)]?

» Multi-source+MHP: Treat observed sequences as independent
samples and learn {HP(p*, ®)}£_; accordingly.

Theorem (Superposition property [Xu et al.(2017)b])

For K independent Hawkes processes, i.e., N*(t) ~ HP(u*, ®),
k=1,.., !}({ , their superposition is still aKHaWkes process, where
N(t) = 32—y N¥(t) and N(t) ~ HP(3.,_, 1*, ®).
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Superposition property and its benefits
Given N¥(t) ~ HP(u*, ®), k =1,...,K, how to ® = [¢4,(t)]?

» Multi-source+MHP: Treat observed sequences as independent
samples and learn {HP(p*, ®)}£_; accordingly.

Theorem (Superposition property [Xu et al.(2017)b])

For K independent Hawkes processes, i.e., N*(t) ~ HP(u*, ®),
k=1,.., !}({ , their superposition is still aKHaWkes process, where
N(t) = 32—y N¥(t) and N(t) ~ HP(3.,_, 1*, ®).

» Superposition+HP: Superpose observed sequences and learn a
single HP(u, ®).

HP(u', ®)
? T >Superposmon - Z”lv o
HP(u2 ®) i
t 1 1T
HP (4, ®)

| 1,

Figure 12: Learning superposed Hawkes processes.
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Superposition property and its benefits

1. Multi-source+MHP: Treat observed sequences as independent
samples and learn {HP(u*, ®)}K ;| accordingly.

2. Superposition+HP: Superpose observed sequences and learn a
single HP(u, ®).

Theorem ([Xu et al.(2017)b])

For K D-dimensional Hawkes processes with ¢q,(t) =Y. alf km(t),
i.e., HP(uX, A), k =1, ..., K, suppose that

» FEach observed sequence has | events;
> The parameters are bounded as |p*||3 < B,, and ||A||% < Ba;
> The upper bound of | Y., u*|3 is denoted as Bs,,.

The bound on the excess risk of Superposition+HP is tighter if

Ki

— D(1+ D)B, Iog(l + D(1K—|I—D))'
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Typical Cases

For NX(t) ~ HP(u*, ®), k =1,.... K

Lemma (Typical Infeasible Condition)

If ut = p? = ... = pX, the Multi-source+MHP strategy has a
tighter bound of excess risk.

Lemma (Typical Feasible Condition)

If (¥, k'Y = 0 for all k # k', the Superposition+HP strategy
has a tighter bound of excess risk.
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Benefits from superposed Hawkes processes

[l Single source + HP
[ Multi-source + HP

[IMulti-source + MHP
[ISuperposition + HP

[l Single source + HP 15
[ Multi-source + HP
[IMulti-source + MHP

15| superposition + HP

Relative error
-
Relative error

0.5
0.5

0 0
K=2 K=5 K =10 K=2 K=5 K=10
(a) Least-Square (b) MLE

Figure 13: Comparisons based on LS and MLE, respectively.

Using superposition-based learning strategy, we can enhance the
robustness to the problem of data insufficiency.
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Outline

» Part I: Basics and typical models for TPPs

1.

ARl B

6.

Real-world event sequences

Temporal point processes and intensity functions
Classic learning strategies

Simulation and prediction

Hawkes processes

Open source packages

» Part |I: Deep networks for temporal point processes

» Part |ll: Temporal point processes in practice
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Open source packages

Some toolboxes have been developed for TPPs.
» Tick [Bacry et al.(2017)b]
https://x-datainitiative.github.io/tick/index.html
> THAP [Xu and Zha(2017)b]
https://github.com/HongtengXu/Hawkes-Process-Toolkit

> PoPPy [Xu (2018)]
https://github.com/HongtengXu/PoPPy
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https://x-datainitiative.github.io/tick/index.html
https://github.com/HongtengXu/Hawkes-Process-Toolkit
https://github.com/HongtengXu/PoPPy

Tick

A machine learning library for Python 3.
» The core functions are implemented by C language.

» Linear models, point processes, survival analysis.

v

Integrate some classic Hawkes process models.

v

Implement many optimization solvers

v

Support multi-CPU computation
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THAP

THAP: A MATLAB Toolboxes for HAwkes Processes and its
variants.

| THAP: A toolkit of Hawkes processes |
1

—

Data |

—l Simulation |

Model |

Visualization I

—| Format Conversion |

—| Thinning methods |

—| Parametric Hawkes |

—| Data statistics |

—‘l Preprocessing I

% Branch clustering |

Help |

—I Analysis I

—| Function reference I

N p—

—l Handbook of the tool

Maximum likelihood
Cumulants estimation

Nonparametric
Hawkes

—{ Intensity plot

Basis representation

Ordinary differential equation

Time series-based method

Variants of Hawkes

Mixture of Hawkes

—l Impact function plot

Granger causality
Clustering structure

Ti ying Hawkes

—| Version information I

—[ Clustering structure I

Figure 14: The architecture of THAP.

Model-based methods
Feature-based methods

Learning result plot

Prediction result plot

I
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THAP: Functions and Applications

Intensity, A(t)
Ve w

log Runtime (sec)

[

10

Event-occurrence time (129 events total)

(a) Data, intensity

1T THT VY T
30 40 50

710
172
_1‘74!/9__,,—__9—_
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5178 —=—ODE
18 —s—MLE
—=—MLE-S
1.82 —&—MLE-SGL
—&—MLE-SGLP
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50 100 150 200

(e) Log-likelihood
Figure 15: Visualization of typical functions achieved by THAP
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PoPPy

PoPPy: A Point Process PyTorch Toolbox
» |t is an extension of THAP.
» Rich Functionality: data operations, learning, prediction,
simulation, visualization, ...
» High Flexibility: modular design of model, multiple loss
functions, regularizers, support numerical and categorical
features, ...

» High Scalability: support GPU computations
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PoPPy: Flexible model design

Intensity function:

Ad(t-) = 8\ (/J/(d, fd? fS) + Z ¢(t7 ti, d: di7 fda fd,-))

i (22)
= g ( d fd, +ZZam d d,,fd,fd)lim(t—t,)) .
ti<t m=1
Exogenous Intensity and Endogenous Impact:
g (ILLd) ga(add,-m)7
gM(W ) ga(ulm d”m)7
/‘(da fdaf;‘) = g“(fTWf) am(d? divfd?fdi) = ga(wlmfdi),
I\7N(d £, £) &(fy Wnly)
e NN(d, d;, 5, ).
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PoPPy: Flexible model design

(a) Exponential  (b) Rayleigh kernel (c) Gaussian kernel

nnnnnnnnnnnnnnn

(d) Powerlaw kernel  (e) Gate kernel  (f) Multi-Gaussian

Figure 16: Examples of decay kernels and their integration values.

51/54



PoPPy: Flexible data operations

Stitching (random or feature-based)
000> + 00— = 900 0—0 0 0—0>

Superposing (random or feature-based)
00-0—0> + 00— = 0000

Aggregating
St > - l—!—.ﬂ—l—l—.—l—.ﬂ—v

Batch Sampling

Figure 17: Typical data operations.
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Summary

» Temporal point processes have been widely used to describe
the dynamic mechanisms hidden in real-world event sequences.

» The key of TPPs is modeling their intensity functions.

» The learning and the simulation of TPPs are flexible and
theoretically-supportive.

» Hawkes processes are powerful to model the self- and
mutually-triggering patterns among different event types,
which have many useful properties for practical applications.

53 /54



References

Emmanuel Bacry, Martin Bompaire, Stéphane Gaiffas, and Soren Poulsen.
tick: a python library for statistical learning, with an t
Bacry, Emmanuel, and Jean-Francois Muzy.

First-and second-order statistics characterization of Hawkes processes and non-parametric estimation. /EEE TIT, 2016.
Michael Eichler, Rainer Dahlhaus, and Johannes Dueck.

Graphical modeling for multivariate hawkes processes with nonparametric link functions. Time Series Analysis, 2017.
Alan Hawkes.

Point spectra of some mutually exciting point processes. Journal of the Royal Statistical Society. Series B, 1971.
Liniger, Thomas Josef.

Multivariate Hawkes processes, 2009.

Ogata, Yosihiko.

Statistical models for earthquake occurrences and residual analysis for point processes. In JASA, 1988.

Yosihiko Ogata.

On lewis' simulation method for point processes. IEEE Transactions on Information Theory, 1981.

Hongteng Xu and Hongyuan Zha.

THAP: a Matlab toolkit for learning with Hawkes processes. arXiv:1708.09252, 2017.

Hongteng Xu.

PoPPy: A Point Process Toolbox Based on PyTorch. arXiv:1810.10122, 2018.

Hongteng Xu, Dixin Luo, and Hongyuan Zha.

Learning hawkes processes from short doubly-censored event sequences. ICML, 2017.

Hongteng Xu, Farajtabar, Mehrdad, and Hongyuan Zha.

Learning Granger causality for Hawkes processes. ICML, 2016.

Farajtabar, Mehrdad, et al.

Shaping social activity by incentivizing users. NIPS, 2014.

Farajtabar, Mehrdad, et al.

Back to the past: Source identification in diffusion networks from partially observed cascades. AISTATS, 2015.

Ke Zhou, Hongyuan Zha, and Le Song.

Learning Social Infectivity in Sparse Low-rank Networks Using Multi-dimensional Hawkes Processes. In AISTATS, 2013.
Zhao, Qingyuan, et al.

Seismic: A self-exciting point process model for predicting tweet popularity. KDD, 2015.

Xu, Hongteng and Wu, Weichang and Nemati, Shamim and Zha, Hongyuan.

Patient flow prediction via discriminative learning of mutually-correcting processes TKDE, 2016.

Hongteng Xu, Dixin Luo, Xu Chen, and Lawrence Carin.

Benefits from superposed Hawkes processes AISTATS, 2018.

Wang, Yichen, et al

Isotonic hawkes processes. ICML, 2016.

Megller, Jesper and Rasmussen, Jakob G

Approximate simulation of Hawkes processes. Methodology and Computing in Applied Probability, 2006.

Li, Shuang, et al.

Learning temporal point processes via reinforcement learning. NIPS, 2018.

Zammit-Mangion, Andrew, et a

Point process modelling of the Afghan War Diary. PNAS, 2012.

d

on ti depend: i arXiv:1707.03003, 2017.

54/

54



