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APPENDIX A
PROOF OF THEOREM 1
We provide the proof details of our main result, presented in
Theorem 1. The main procedure follows the seminar work
[2] and we note that the challenge lies in Lemma. 2 which
we believe is new and different from results in [4], [5].

Theorem 1 (Error Bound). For L̃ = ŨΣ̃Ũ
>

in Algorithm 1,
and ζ = 1 +

√
r

p−1 + e
√
r+p
p

√
s− r,

E ‖ L− L̃ ‖2≤ ζ1/q ‖ L− L̃r ‖2 +
(

1 + ζ1/q
) n√

s
L∗i,i,

where L∗i,i = maxi Li,i and Lr is the best rank-r approximation.

A.1 Preliminaries and Existing Results
For the sake of completeness, we present the definitions and
existing results used in the proof.

Definition 1. (Orthogonal Projector, [1]). A matrix P is
called an orthogonal projector if P = P> = P2.

Lemma 1. As shown in [6], the matrices G ∈ Rn×n and F ∈
Rn×n satisfy,

max
1≤i≤n

|σi(G)− σi(F)| ≤ ‖ G− F ‖2 (1)

n∑
i=1

(
σi(G)− σi(F)

)2
≤ ‖ G− F ‖2F . (2)

Theorem 2. (Proposition 1, [2]). Given a real l-by-l matrix A
with eigenvalues σ1 ≥ . . . ≥ σl, choose a target rank k and an
oversampling parameter p ≥ 2, where k + p ≤ l. Draw an l-by-
(k + p) standard Gaussian matrix Ω, then construct the sample
matrix AqΩ where q ≥ 1. The orthonormal basis Q of matrix
AqΩ (i.e., AqΩ = QQ>AqΩ) satisfies

E ‖ (I−QQ>)A ‖2≤ ζ1/qσk+1(A), (3)

where ζ = 1 +
√

k
p−1 + e

√
k+p
p

√
l − k.

Theorem 3. (Theorem 10.5, [2]). Suppose that A is a real l-by-l
matrix with eigenvalues σ1 ≥ . . . ≥ σl. Choose a target rank k
and an oversampling parameter p ≥ 2, where k + p ≤ l. Draw
an l × (k + p) standard Gaussian matrix Ω, and construct the
sample matrix AΩ. Then,

E ‖ (I−QQ>)A ‖F≤
(

1 +
k

p− 1

)1/2
(∑

i>k

σ2
i

)1/2

, (4)

where Q is the orthonormal basis of the range of matrix AΩ such
that AΩ = QQ>AΩ.

Theorem 4. (Corollary 2, [4]). Suppose that X is a real d-by-n
matrix. Choose a set S of size l at random without replacement from
{1, 2, . . . , n}, and let H equals the columns of X corresponding
to indices in S . Let HH> be an approximation to XX>, then

E ‖ XX> − κHH> ‖F≤
n√
l

max
i
‖ X∗,i ‖2, (5)

where κ = n
l is a non-zero scaling parameter, and ‖ X∗,i ‖ is the

Euclidean norm of the ith column of matrix X.

A.2 Proof of Theorem 1
Proof. Since the graph Laplacian matrix L is a symmetric
positive semidefinite matrix, we can write it as:

L = X>X,

where X ∈ Rd×n and d is the rank of matrix L.
Let S = {0, 1}n×s be a column sampling matrix where

Si,j equals to 1 if the ith column of L is chosen in the jth

random trial and equals to 0 otherwise. Then, C = X>H
and A = H>H where H = XS.

We take R = HA−1/2Q, then

L̃ = CA−1/2ṼṼ>A−1/2X>

= X>HA−1/2QQ>A−1/2H>X

= X>PRX = X>URUR
>X,

where PR = HA−1/2QQ>A−1/2H> is an orthogonal pro-
jector and UR is the orthonormal basis of matrix R.

To bound the approximate error, we have

‖ L− L̃ ‖2
= ‖ X>X−X>URUR

>X ‖2
(a)
= ‖ X>X− (PRX)>PRX ‖2
(b)
= ‖ X−URUR

>X ‖22
= ‖ X−XURUR

> ‖22
= ‖ XX> −XURUR

>X> ‖2,

where (a) holds due to the orthogonal project PR satisfying
PR = PR

> = PR
2; (b) holds due to ‖ AB ‖2=‖ BA ‖2 for

any A ∈ Rm×n and B ∈ Rn×m;
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Using Lemma 2 in Sec. A.3,

‖ XX> −XURUR
>X> ‖22

≤ ‖ XX> − κR(HQ)>HQR> ‖2
≤ ‖ XX> − κH>H ‖2

+ κ ‖ HH> −R(HQ)>HQR> ‖2, (6)

where the last step holds due to the triangle inequality.
Since A−1/2H>HA−1/2 = Is, it gives

‖ HH> −R(HQ)>HQR> ‖2
= ‖ HH> −HA−1/2Q(HQ)>HQQ>A−1/2H> ‖2
= ‖ HA−1/2(A1/2H

>
−QQ>H>HA−1/2H>) ‖2

= ‖ H>H−QQ>H>H ‖2=‖ (I−QQ>)A ‖2 .

Using Theorem 2, we can bound the expected error,

κE ‖ HH>−R(HQ)>HQR>‖2
=κE ‖ (I−QQ>)A ‖2
≤ζ1/qσr+1(κA) = ζ1/qσr+1(κHH>)

≤ζ1/qσr+1(XX>) + ζ1/q ‖ XX> − κHH>‖2, (7)

where the last inequality holds because of σr+1(κHH>)−
σr+1(XX>) ≤ maxi |σi(XX>)−σi(κHH>)| and Lemma 1.

Combining Eq. (6) and (7), we conclude our result

E ‖ L− L̃ ‖2
≤ ζ1/qσr+1(XX>) + (1 + ζ1/q) ‖ XX> − κHH>‖2
≤ ζ1/q ‖ L− Lr ‖2 +(1 + ζ1/q)

n√
s
L∗i,i,

where the last step is due to ‖ XX> − κHH>‖2≤‖ XX> −
κHH>‖F and Theorem 4.

A.3 Proof of Lemma 2
Lemma 2. Given X ∈ Rd×n, let UR be the orthonormal basis of
the range of matrix R ∈ Rd×s. Then for any HQ ∈ Rs×s,

‖ XX>−XUR(XUR)>‖2
≤‖ XX>− κR(HQ)>HQR>‖2 .

where κ = n
s is a non-zero scaling parameter.

Proof. Let PR = URU>R. On using the property of orthogo-
nal projector (i.e., PR = P>R = PR

2), we have

‖ XX>−XUR(XUR)>‖2
= ‖ XX> −XPR(XPR)> ‖2 (8)

= ‖ X−PRX ‖22= max
‖v‖=1

‖ v>(X−PRX) ‖2 .

We then decompose the vector v as v = αy + βz, where
y ∈ ran(R), z ∈ ran⊥(R) and α2 + β2 = 1. It is clear to see
that y>PR = y>, and z>PR = 0. Thereby,

‖ X−PRX ‖2
≤ max

y∈ran(R),‖y‖=1
‖ y>(X−PRX) ‖

+ max
y∈ran⊥(R),‖z‖=1

‖ z>(X−PRX) ‖

≤ max
z∈ran⊥(R),‖z‖=1

‖ z>X ‖ . (9)

For z ∈ ran⊥(R), z>R(HQ)>HQR>z = 0. Then,

‖ z>X ‖2 = z>XX>z

= z>(XX> − κR(HQ)>HQR>)z

≤ max
‖z‖=1

z>(XX> − κR(HQ)>HQR>)z

=‖ XX> − κR(HQ)>HQR>‖2 . (10)

Combining Eq. (8-10) concludes the lemma.

APPENDIX B
IMPLEMENTATION DETAILS

In this section, we present the details of our implementation
in order for reproducibility. All experiments are conducted
on the machines with Xeon 3175X CPU, 128G memory and
RTX8000 GPU with 48 GB memory. The configurations and
packages are listed below:
• Ubuntu 16.04
• CUDA 10.2
• Python 3.7
• Tensorflow 1.15.3
• Pytorch 1.10
• DGL 0.8.2
• NumPy 1.19.0 with MKL Intel

B.1 EasyDGL Architectures for Three Tasks on Graph
B.1.1 Dynamic Link Prediction:
• Use maximum sequence length to 30 with the masked

probability 0.2.
• Two-layer Attention-Intensity-Attention with two heads.
• Use ReLU as the activation.
• Use inner product between user embedding and item

embedding as ranking score.

B.1.2 Dynamic Node Classification
• Randomly mask graph nodes with probability 0.2.
• Two-layer GATConv and one-layer Attention-Intensity-

Attention block with two heads.
• Use ReLU as the activation.
• Use one-layer Linear for multi-class prediction.

B.1.3 Traffic Forecasting
• Randomly mask graph nodes with probability 0.2.
• Two-layer SAGEConv and one-layer Attention-Intensity-

Attention with eight heads.
• Use ReLU as the activation.
• Use one-layer Linear for prediction.

B.2 Baseline Architectures for Dynamic Link Predic-
tion
As mentioned, we follow IDCF [7] to build typical GNN
architectures. Here we introduce the details for them.

GAT. We use the GATConv layer available in DGL for
implementation. The detailed architecture description is as
below:
• A sequence of one-layer GATConv with four heads.
• Add self-loop and use batch normalization for graph

convolution in each layer.
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• Use tanh as the activation.
• Use inner product between user embedding and item

embedding as ranking score.
GraphSAGE. We use the SAGEConv layer available in

DGL for implementation. The detailed architecture descrip-
tion is as below:
• A sequence of two-layer SAGEConv.
• Add self-loop and use batch normalization for graph

convolution in each layer.
• Use ReLU as the activation.
• Use inner product between user embedding and item

embedding as ranking score.
GCN. We use the SGConv layer available in DGL for

implementation. The detailed architecture description is as
below:
• One-layer SGConv with two hops.
• Add self-loop and use batch normalization for graph

convolution in each layer.
• Use ReLU as the activation.
• Use inner product between user embedding and item

embedding as ranking score.
ChebyNet. We use the ChebConv layer available in DGL

for implementation. The detailed architecture description is
as below:
• One-layer ChebConv with two hops.
• Add self-loop and use batch normalization for graph

convolution in each layer.
• Use ReLU as the activation.
• Use inner product between user embedding and item

embedding as ranking score.
ARMA. We use the ARMAConv layer available in DGL

for implementation. The detailed architecture description is
as below:
• One-layer ARMAConv with two hops.
• Add self-loop and use batch normalization for graph

convolution in each layer.
• Use tanh as the activation.
• Use inner product between user embedding and item

embedding as ranking score.
We also summarize the implementation details of the

compared sequential and temporal baselines as follows.
GRU4REC.1 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• A sequence of two GRU cells.
• Use maximum sequence length to 30.
• Use inner product between user embedding and item

embedding as ranking score.
SASREC.2 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• A sequence of two-block Transformer with four heads on

Koubei, eight heads on Tmall and one head on Netflix.
• Use maximum sequence length to 30.
• Use inner product between user embedding and item

embedding as ranking score.
GREC.3 We use the software provided by the authors

1. https://github.com/hidasib/GRU4Rec
2. https://github.com/kang205/SASRec
3. https://github.com/fajieyuan/WWW2020-grec

for experiments. The detailed architecture description is as
below:
• A sequence of six-layer dilated CNN with degree

1, 2, 2, 4, 4, 8.
• Use maximum sequence length to 30 with the masked

probability 0.2.
• Use inner product between user embedding and item

embedding as ranking score.
S2PNM.4 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• A sequence of one-block GRU-Transformer.
• Use maximum sequence length to 30.
• Use inner product between user embedding and item

embedding as ranking score.
BERT4REC.5 We use the software provided by the au-

thors for experiments. The detailed architecture description
is as below:
• A sequence of three-block Transformer with eight heads.
• Use maximum sequence length to 30 with the masked

probability 0.2.
• Use inner product between user embedding and item

embedding as ranking score.
DyREP.6 We use the software provided by the third party

for experiments. The detailed architecture description is as
below:
• A sequence of one Attention-RNN Layer.
• Use maximum sequence length to 30.
• Use linear layer of user embedding and item embedding

with softplus activation as ranking score.
TGAT.7 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• A sequence of three-block Transformer with time sinu-

soidal embeddings.
• Use maximum sequence length to 30.
• Use inner product between user embedding and item

embedding as ranking score.
TiSASREC.8 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• A sequence of three-block Transformer with one heads

with time embedding.
• Use maximum sequence length to 30.
• Use inner product between user embedding and item

embedding as ranking score.
TGREC.9 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• A sequence of three-block Transformer with time sinu-

soidal embeddings.
• Use maximum sequence length to 30.

4. https://github.com/cchao0116/S2PNM-TKDE2022
5. https://github.com/FeiSun/BERT4Rec
6. https://github.com/uoguelph-mlrg/LDG
7. https://github.com/StatsDLMathsRecomSys/Inductive-

representation-learning-on-temporal-graphs
8. https://github.com/JiachengLi1995/TiSASRec
9. https://github.com/DyGRec/TGSRec



4

• Use inner product between user embedding and item
embedding as ranking score.

TimelyREC.10 We use the software provided by the au-
thors for experiments. The detailed architecture description
is as below:
• A sequence of one-block Attention-Attention.
• Use maximum sequence length to 30.
• Use inner product between user embedding and item

embedding as ranking score.
CTSMA.11 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• A sequence of two-block Transformer with four heads.
• Use maximum sequence length to 30.
• Use inner product between user embedding and item

embedding as ranking score.

B.3 Baseline Architectures for Dynamic Node Classifi-
cation
The configurations for static graph models are identical to
the dynamic link prediction task except the decoder module
that is replaced by one-layer Linear.

In the following, we present the architectures for new
dynamic graph models.

DySAT.12 We use the software provided by the authors
for experiments. The detailed architecture description is as
below:
• Use past five graph snapshots as input.
• A sequence of three-layer GATConv and one-layer Tem-

poralAttention with two heads.
• Use ReLU as the activation.
• Use one-layer Linear for multi-class prediction.
EvolveGCN.13 We use the software provided by the au-

thors for experiments. The detailed architecture description
is as below:
• Use past five graph snapshots as input.
• One-layer gated GRUCell to update the parameters of

two-layer GCNConv.
• Use ReLU as the activation.
• Use one-layer Linear for multi-class prediction.
JODIE.14 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• Use past five graph snapshots as input.
• One-layer gated GRUCell to update the hidden states

read out from two-layer TemporalTransformer.
• Use ReLU as the activation.
• Use one-layer Linear for multi-class prediction.
TGN.15 We use the software provided by the authors

for experiments. The detailed architecture description is as
below:
• Use past five graph snapshots as input with sinusoidal

time embedding.

10. https://github.com/Junsu-Cho/TimelyRec
11. https://github.com/cchao0116/CTSMA-ICML21
12. https://github.com/aravindsankar28/DySAT
13. https://github.com/IBM/EvolveGCN
14. https://github.com/claws-lab/jodie
15. https://github.com/twitter-research/tgn

• Three-layer TemporalTransformer with five heads.
• One-layer time-decayed Recurrent unit to sequentially

update node embeddings over time.
• Use ReLU as the activation.
• Use one-layer Linear for multi-class prediction.

B.4 Baseline Architectures for Traffic Forecasting
The configurations for static graph models are identical to
the dynamic link prediction task except the decoder module
that is replaced by one-layer Linear.

In the following, we present the architectures for new
dynamic graph models.

DCRNN. We use the software provided in DGL library.
The detailed architecture description is as below:
• Use past twelve graph snapshots as input.
• One-layer ChebConv with two hops.
• One-layer GraphRNN to sequential update the node

embeddings over time.
• Use ReLU as the activation.
• Use one-layer Linear for prediction.
GaAN. We use the software provided in DGL library. The

detailed architecture description is as below:
• Use past twelve graph snapshots as input.
• One-layer gated graph attention that considers the edge

weights.
• One-layer GraphRNN to sequential update the node

embeddings over time.
• Use ReLU as the activation.
• Use one-layer Linear for prediction.
STGCN. We use the software provided in DGL library.

The detailed architecture description is as below:
• Use past twelve graph snapshots as input.
• A sequence of TNTSTNTST, where T, N, S represents

temporal convolutional neural network, LayerNorm and
spatial graph convolutional neural network, respectively.

• Use ReLU as the activation.
• Use one-layer Linear for prediction.
DSTAGNN.16 We use the software provided by the au-

thors for experiments. The detailed architecture description
is as below:
• Use past twelve graph snapshots as input.
• Four-layer DSTAGNN with four heads each of which

uses ChebConv with three hops.
• Use ReLU as the activation.
• Use Conv2d and Linear for prediction.

B.5 Choice of Hyper-parameters
Regarding the choice of optimizer, we use Adam [3] if not
specified and the number of epochs is 200. We search by grid
the embedding size ranging in {64, 128, . . . , 512}, learning
rate {1e−5, 1e−4, . . . , 1e−1}, dropout rate {0.1, 0.2, . . . , 0.7},
batch size {64, 128, . . . , 512} and `2 regularizer {1e−5, 1e−
4, . . . , 1e−1}. We also study the influence of the neighborhood
hops ranging from 1 to 3, the number of graph filtering blocks
from 1 up to 4 and the number of heads in {1, 2, . . . , 8}.

We warn that we set the embedding size to 32 for fair
comparisons when evaluating the performance on the Ellicit

16. https://github.com/SYLan2019/DSTAGNN
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and META-LA datasets. This is because that TGN, DCRNN
and DSTAGNN take days to complete the training if the
embedding size is greater than 64.

With regard to EasyDGL, we search by grid the masking
rate in {10%, 20%, . . . , 50%} where in majority of cases 20%
outputs the best results. We also search the best parameter
for the TPPLE term in {1e−7, 1e−6, . . . , 1e−3}.

APPENDIX C
DATASET PROCESSING

We present more dataset details in this section.

C.1 Time Scaling
We use one hour, one day and one week to scale the time
data on the Netflix, Tmall and Koubei datasets, respectively.
The choice of time unit is determined by the averaged time
between two consecutive events for each user. We warn that
again the time is discrete on the Elliptic data and the traffic
speed readings on META-LA are record every five minutes.
For both of these two datasets, we apply no modifications to
the time data.

C.2 Random Seed
We use five random seeds to yield different data splits, i.e.,
12345, 54321, 56789, 98765 and 7401.

C.3 Normalization on the META-LA data
We calculate the mean and the standard deviation of the
training readings on each road (node). When making pre-
dictions, we use these quantities to scale down the input
readings and scale up the output readings. We found by
experiments that this treatment can significantly reduce the
RMSE and MAPE errors.
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