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Abstract

Temporal point process (TPP) has served as a ver-
satile framework for modeling event sequences in
continuous time space. It spans a wide range of
applications as event data is prevalent and becom-
ing increasingly available such as online purchase,
device failure. Tailored TPP learning algorithms
are devised to different special processes, comple-
mented by recent neural network based approach-
es. In general, traditional statistical TPP models are
more interpretable and less data ravenous, which
lay their success on appropriate selection of the in-
tensity function via domain knowledge. In contrast,
emerging network based models have higher capac-
ity to digest massive event data with less reliance
on model selection. However their physical mean-
ing becomes less comprehensible. From machine
learning perspective, this survey presents a litera-
ture review on these two threads of research. We
walk through several working examples to provide
a concrete disclosure of representative techniques.

1 Introduction

Many real-world scenarios produce data can be modeled by
the temporal point process (TPP). Examples include device
disorders with their error codes, earthquake with magnitude
and location whereby various types of asynchronous events
interact with each other and exhibit complex dynamic pattern-
s in the continuous time domain. Investigating this dynamic
process and the underlying causal relationship will lay the
foundation for further applications such as micro and macro
level event prediction, root cause diagnose. Specifically it has
facilitated the tackling of many domain-specific applications,
with the increasing availability to large-scale event data e.g.
from social media and online commerce.

Despite the abounding literature on time series based se-
quence models such as Markov chain, hidden Markov model
and vector auto-regressive model, learning methods for ex-
plicitly addressing problems with asynchronously generated
event data only start to emerge over the last decade.

1.1 Preliminaries on temporal point process
Temporal point process (TPP) [Daley and David, 2007] is a
classic mathematical tool for modeling stochastic point pro-
cess in continuous time space which often refers to event se-
quence as a concrete embodiment1. A temporal point process
is a random process whose realization involves a sequence of
(labeled) events in continuous time. TPP provides a princi-
pled treatment by directly absorbing the raw timestamp such
that the time information is accurately kept. Compared with
the time series representation that converts event sequence by
aggregation based on predefined time interval, TPP dismisses
the unwanted discretization error which formally refers to the
so-called Modifiable Areal Unit Problem [Fotheringham and
Wong, 1991] i.e. the learning can be sensitive to the choice of
the interval length for aggregation. Moreover, TPP has a re-
markably well-established theoretical foundation, and it can
mathematically incorporate the whole history without speci-
fying the order as required by Markovian models.

Temporal point process is equivalent to a counting process,
denoted by N(t) which counts the number of events before
time t. The keystone of TPP is its (conditional) intensity func-
tion i.e. the stochastic model for the next event conditioned
on the history events. Formally, for an infinitesimal time win-
dow [t, t+ dt), let λ∗(t) be the occurrence rate for the future
event conditioned on history Ht = {zi, ti|ti < t} up to but
not including time t, we have the following definition:

λ∗(t)dt = P(event in [t+ dt]|Ht) = E(dN(t)|Ht)
where E(dN(t)|Ht) is the expected number of events hap-

pened in the interval (t, t + dt] given the historical observa-
tions Ht. Note we assume a regular point process [Rubin,
1972] (as most literature do on point process) i.e. two event
coincide with likelihood 0 i.e. dN(t) ∈ {0, 1}. The ∗ nota-
tion reminds us that the function depends on history and we
omit Ht for conciseness. The conditional intensity function
has played a central role and many processes vary on how it
is parameterized. Readers are referred to the textbook [Daley
and David, 2007] for a more detailed and rigorous treatment.

1.2 Motivation of the survey
TPP provides a solid mathematical framework for modeling
event sequences [Daley and David, 2007]. However until re-
cently is the machine learning community starting to widely

1We use event sequence as the concrete form of stochastic point
process for discussion in this paper without loss of generality.



undertake this tool for practical problems. The bond with
modern machine learning techniques in turn, has also signifi-
cantly advanced its theory and methods, e.g. with alternating
direction method of multipliers [Zhou et al., 2013a] and ad-
versarial learning [Xiao et al., 2018]. To have a principled
picture of recent advances and help readers better understand
the technical details to an appropriate extent, a survey from
machine learning perspective is welcomed.

There are a few relevant surveys: [González et al., 2016]
reviews specific spatio-temporal point process and the latter
focuses on self-exciting process. For its theoretical impor-
tance and practical dominance in applications, Hawkes pro-
cess and its applications in finance are reviewed in [Hawkes,
2018] authored by Hawkes himself. More examples and dis-
cussion for Hawkes process in finance can be found in anoth-
er excellent survey [Bacry et al., 2015] which is also tailored
to the finance setting. Many relevant works in the machine
learning community are missing in these articles, especially
for neural network based ones, which is covered in this paper.

The purpose of this survey is to identify recent advances in
TPP from the machine learning perspective whereby learning
objectives and algorithms are the main focus of this article.
The discussion navigates from traditional statistical models
to neural network methods, and the latter show its promising
capability for learning with massive data and less reliance on
prior knowledge. Due to its prevalence in both theoretical
study and real-world applications, the self-exciting Hawkes
process and its variants are frequently discussed.

1.3 Traditional TPP vs. neural TPP
Temporal point process models are often used for either fu-
ture prediction or quasi-causality discovery. These two tar-
gets are closely related to the central problems in machine
learning: model capacity (for prediction accuracy) and mod-
el interpretability [Choi et al., 2016]. The history of TP-
P also evolves from traditional parametric models whereby
the conditional intensity function’s form is manually pre-
specified, to more recent neural network based models – we
call neural point process in line with the term used in [Mei
and Eisner, 2017; Du et al., 2016], which frees the need
for explicit parametric intensify form selection. In fact it is
generally observed [Mei and Eisner, 2017; Du et al., 2016;
Xiao et al., 2017b] that the traditional TPP models with ex-
plicit parametric intensity function excel at clear interpreta-
tion on the problem for learning, while the neural point pro-
cess models shows high model capacity for learning arbitrary
and unknown distributions. In the following, we will navi-
gate through the works along these two threads. In particular,
as the neural point process is a more emerging area, we will
describe in more details involving specific formulas used in
representative works. As traditional TPP models have been
published in many literature in statistics, we call them statis-
tical TPP to differentiate the neural TPP.

2 Traditional Statistical Point Processes
2.1 Likelihood function
We first derive the joint likelihood function based on the con-
ditional intensity function λ∗(t). Note that the following

derivation is based on the definition of so-called regular point
process [Rubin, 1972]. For notational conciseness for a com-
pact survey, in the following we ignore the event mark which
will not make significant change of the equations.

The joint density function can be written by:

f(t1, t2, . . . , tn) =
∏
j

f∗(tj |Hj) (1)

where Hj = (t1, t2, . . . , tj−1) is the history for event at
tj starting from t0 up to time tj but not including tj . Re-
call that the conditional density function f∗(tj+1) (again we
omit Hj for f∗) has an elegant relation with the condition-
al intensity function: λ∗(t)S∗(t) = f∗(t) where S∗(t) =

exp
(
−
∫ tj+1

tj
λ(τ)dτ

)
is the probability that no new event

occurs up to time t since tj . Hence for each tj+1 we have

f∗(tj+1) = λ∗(tj+1) exp

(
−
∫ tj+1

tj

λ(τ)dτ

)
(2)

Accordingly the log-likelihood function can be written by:

log f(t1, t2, . . . , tn) =

n∑
j=1

log λ∗(tj)−
∫ tn

t0

λ∗(τ)dτ (3)

Note that for conciseness, the presented equations in this pa-
per are mainly for unmarked point process. Under the same
framework, readers are referred to [Liniger, 2009] for the de-
tails for multi-dimensional case i.e. marked point process.

2.2 Popular intensity function forms
Traditional works are mostly developed around the innova-
tion of the intensity function such as:

i) Poisson process: the basic form is history independent
λ(t) = λ0 which can be dated back to the 1900’s. Relaxing
the constant constraint to let λ(t) a function of time leads to
the on-homogeneous Poisson process and further extension to
stochastic process leads to the famous doubly stochastic Pois-
son process, also called Cox Process first appeared in [Cox,
1955]; ii) Reinforced poisson processes [Pemantle, 2007]:
the model captures the ‘rich-get-richer’ mechanism by λ(t) =
λ0f(t)i(t) where f(t) mimics the aging effect while i(t) is
the accumulation of history events; iii) Self-exciting process
[Hawkes, 1971]: also called Hawkes process, it provides an
additive model to capture the self-exciting effect from his-
tory events λ(t) = λ0 +

∑
ti<t

gexc(t − ti). This model
also has an alternative representation by the Poisson branch-
ing process [Hawkes and Oakes, 1974]; iv) Reactive point
process [Ertekin et al., 2015]: it can be regarded as a gener-
alization for the Hawkes process by adding a self-inhibiting
term to account for the inhibiting effects from history events
λ(t) = λ0 +

∑
ti<t

gexc(t− ti)−
∑
ti<t

ginh(t− ti); v) Self-
correcting process [Isham and Westcott, 1979]: its back-
ground part increases steadily, while it is decreased by a con-
stant e−α < 1 every time a new event appears.

2.3 Maximum likelihood based learning
Parametric models TPP are mostly learned by optimizing
log-likelihood or its lower bound. For instance, efforts have
been devoted to learning parametric Hawkes process whereby



the background term and triggering term have explicit forms
e.g. a constant and an exponential kernel respectively.

Note Eq. 3 involves an accumulation over previous points
rendering analytical optimization intractable. In [Ozaki,
1979], gradients and Hessian of the log-likelihood function
are explicitly computed while the convergence can be s-
low. In the seminal work [Veen and Schoenberg, 2008], an
expectation-maximization (EM) framework is devised to con-
struct a bound of the objective and at each iteration the param-
eters are decoupled such that they can be solved independent-
ly. For multi-dimensional process with typed events, tech-
niques e.g. sparse low-rank regularization are used to mit-
igate the curse of high-dimensionality [Zhou et al., 2013a].
Departure from EM based approaches, other techniques e.g.
sampling based methods are adopted in other forms of inten-
sity functions e.g. the reactive point process (RPP) [Ertekin
et al., 2015]. In fact the Hawkes process can be regarded as a
branching process whereby the background rate and trigger-
ing effect can be declustered via EM akin to the estimation
for Gaussian mixture model. Such properties do not hold for
other processes e.g. RPP.

Nonparametric models To improve the model capacity,
nonparametric methods are devised whereby the terms of the
intensity may not be explicitly parameterized, and implicit
regularization are often added. There are also rich literature
on nonparametric Hawkes process learning. Due to the afore-
mentioned branching nature, EM based methods are widely
used: following the seminal method termed independent s-
tochastic declustering (MISD) [Marsan and Lengline, 2008],
an improvement with additional regularizers called maximum
penalized likelihood estimation (MPLE) [Lewis and Mohler,
2011] is devised to handle nonparametric form of the trig-
gering kernels, whereby the ordinary differential equation
(ODE) is adopted. These works inspire the extension to
multi-dimensional Hawkes process [Zhou et al., 2013b].

2.4 Working examples for Hawkes process
Hawkes process so far has been a dominant point process
in both statistical and machine learning literature. We show
how to learn a parametric self-exciting Hawks process em-
bodiment and its nonparametric variant based on maximum
likelihood learning [Lewis and Mohler, 2011].

Parametric example We start from the parametric form.
Let the intensity be a classic additive form:

λ∗(t) = µ︸︷︷︸
background rate

+ αw
∑
ti<t

e−w(t−ti)

︸ ︷︷ ︸
exponential exciting g(t− ti)

(4)

Here w−1 inteprets the average waiting time for a new event.
Let t0 = 0 and tn+1 = T , then Eq. 3 can be written by:

n∑
i=1

log λ∗(ti)−
∫ T

0

µ+ α
∑
tj<t

g(t− tj)dt


=

n∑
i=1

log λ∗(ti)−

µT +

n∑
i=0

∫ ti+1

ti

α
∑
tj<t

g(t− tj)dt


=

n∑
i=1

log λ∗(ti)−

(
µT +

n∑
j=1

α (G(T − tj)−G(0))

)

whereG(t) is the integral of exciting term g(τ) starting from
τ = 0. As the log function is concave and G(0)=0, we can
derive a lower bound by adding auxiliary variable pij and pii:

n∑
i=1

log

(
µ+

i−1∑
j=1

g(ti − tj)

)
−

(
µT +

n∑
j=1

αG(T − tj)

)

≥
n∑
i=1

(
pii log

µ

pii
+

i−1∑
j=1

pij log
g(ti − tj)

pij

)
− µT −

n∑
j=1

αG(T − tj)

(5)

As shown in [Lewis and Mohler, 2011] which is originated
from [Veen and Schoenberg, 2008], an EM method can be
derived. The E-step we estimate pij and pii:

pk+1
ij =

αkg(ti − tj)
µk +

∑i−1
j=1 αg(ti − tj)

, j = 1, ..., i− 1

pk+1
ii =

µk

µk +
∑i−1
j=1 αg(ti − tj)

(6)

In the M-step, zeroing partial derivatives ∂L
∂µ , ∂L

∂α we have:

µk+1 =
1

N

n∑
i=1

pkii, αk+1 =

∑
i>j p

k
ij∑n

j=1 G(T − tj)
(7)

For w, it can not be solved in analytical form and one can
use the approximation: e−w(T−ti) ≈ 0. Then the scale pa-
rameter w and α can be simplified by:

wk+1 =

∑
i>j p

k
ij∑

i>j(ti − tj)pkij
, αk+1 =

1

n

∑
i>j

pkij (8)

Nonparametric example We turn the above model to a
nonparametric one, with no explicit specification on µ(t) and
g(t). Meanwhile two regularization terms for the background
rate and exciting effect are added. Now Eq. 3 becomes:

n∑
j=1

log λ∗(tj)−
∫ T

0

λ∗(τ)dτ − α1R(µ)− α2R(g) (9)

Though the above problem can be maximized directly by
Euler-Lagrange equation for nonparametric µ(t) and g(t), an
EM treatment can significantly simplify the computing.

Specifically, one introduce the auxiliary random variable
Xij (Xij = 1 if event i is caused by event j otherwise 0) and
Xii (Xii = 1 if event i is caused by background otherwise
0). Then the objective becomes as follows (R(µ), R(g) are
omitted) as used in [Marsan and Lengline, 2008]:

n∑
i=2

(
i−1∑
j=1

Xij log(g(ti − tj))−
∫ T

tj

g(τ − tj)dτ)

)

+

n∑
i=1

Xii log(µ(ti))−
∫ T

0

µ(τ)dτ (10)

In [Lewis and Mohler, 2011], the EM solver deals with the
following subproblem for µ in each iteration (similar for g):
n∑
i=1

Xii log(µ(ti))−
∫ T

0

µ(τ)dτ + α1‖µ
1
2 ‖22, µ > 0, µ ∈ L1(R)

(11)



By letting u =
√
µ one can obtain an Euler-Lagrange e-

quation which can be solved using off-the-shelf numerical
solver:

−αu′′(t) + Cu(t) =
D

u(t)
(12)

where C, D are fixed coefficients for solving u(t). Similar
techniques are used in [Zhou et al., 2013b] for extending to
multi-dimensional marked Hawkes process.

Remark Compared with their parametric counterparts,
nonparametric models have higher capacity to fit complex da-
ta, especially given little knowledge for selecting the appro-
priate model. However nonparametric models call for more
complex algorithms preventing them from adoption by prac-
titioners. A notable trend is resorting to the neural network
based approach for modeling TPP, whereby end-to-end using
learning can be easily performed by off-the-shelf solvers e.g.
stochastic gradient descent and tools e.g. Caffe and Tensor-
flow. We will discuss these works in Sec. 3. While parametric
models can excel when there is a little training data.

3 Neural Point Process
As discussed above, traditional models either suffer from
model mis-specification if the chosen parametric intensity
function does not fit with the real behavior of the event data,
or the learning algorithm can be mathematically very com-
plex for nonparametric models. With the fast development of
deep learning theory and techniques, especially for recurrent
neural network models, there is a trend for adapting networks
to temporal point process learning.

3.1 RNNs for point process
Recurrent neural network (RNN) and its variants e.g. long-
short term memory (LSTM) has been the building block for
learning neural point process. Taking a sequence {x}Tt=1 as
input, the RNN generates the hidden states {h}Tt=1 encoding
the history, and output a sequence of estimated distribution
for event mark and timestamp. One key advantage is that
the model can often be learned end-to-end with no need for
devising tailored algorithms for tailored models as done in
traditional TPP models as described in Sec. 2.

3.2 Maximum-likelihood learning
Akin to the traditional models in Sec. 2, maximum likelihood
has been adopted as the learning objective in many network
based models [Du et al., 2016; Mei and Eisner, 2017]. Given
the sequence set {Si} for Si = (tij , y

i
j)
ni
j=1, by assuming the

independence of the event mark and timestamp, the objective
can be simplified by the factorized model:

max
∑
i

∑
j

logP (yij+1|hj)︸ ︷︷ ︸
Mark likelihood loss

+ log f(tij+1|hj)︸ ︷︷ ︸
Time likelihood loss

 (13)

There are many choices for modeling the above two losses.
In [Du et al., 2016], P (yij+1|hj) is specified by the cross-
entropy loss and the conditional density function can be di-
rectly applied for f(tij+1|hj) = f∗(tj+1). One major differ-
ence between [Du et al., 2016] and [Mei and Eisner, 2017] is

that the former uses one intensity function for all types while
the latter allocates respective intensity functions to each event
type. There are technical variants under the above framework.
We describe two representative works as follows.

The authors [Xiao et al., 2017b] propose to use two sepa-
rate RNNs for TPP modeling. The time series RNN can carry
such fast-changing dense information e.g. body temperature,
heartbeat while the event RNN can capture more abrupt dy-
namics like clinical trials which happen with a longer interval.

To improve interpretability for neural point process which
excels at prediction accuracy while lacks of interpretabili-
ty, attention based RNN has been developed [Wang et al.,
2017a]. The hope is that the impact (either negative or pos-
itive) of the preceding events to the current one can be cap-
tured such that the hidden network consisted by event type as
node and mutual impact as weighted edges can be uncovered.
In [Wang et al., 2017a], a coverage strategy is introduced to
mitigate the misallocation of attention due to the memoryless
of traditional attention mechanism. Using a two-level atten-
tion model for visits and clinical variables, the REverse Time
AttentIoN model (RETAIN) [Choi et al., 2016] is devised to
improve clinical interpretation.

3.3 Likelihood-free learning
Likelihood maximization is asymptotically equivalent to min-
imizing the Kullback-Leibler (KL) divergence requiring stric-
t matching between two probability distributions, which is
sensitive to noise and outliers especially given multi-modal
distributions. Generative adversarial networks (GAN) have
proven to be a promising alternative with extensive theoret-
ical foundation and empirical verification. Recent improve-
ment of Wasserstein GAN (WGAN) [Arjovsky et al., 2017]
replaces the Jensen-Shannon (JS) distance adopted in the o-
riginal GAN [Goodfellow et al., 2014] by the earth moving
(EM) i.e. Wasserstein distance. Compared with the KL dis-
tance, the W-distance is more sensitive to the underlying ge-
ometry structure of samples and robust to issues like mode
dropping in case of multi-modal distribution. We review two
state-of-the-art methods adapting Wasserstein GAN to TPP
that cover both unconditional generative point process models
[Xiao et al., 2017a] and conditional ones [Xiao et al., 2018].

Figure 1 illustrates the overview of the architecture for con-
ditional and random based GAN model for TPP.

3.4 Working examples for Wasserstein TPP
Two working examples are also presented in the following.

Random input based Wasserstein learning
We start with the Wassestein distance between two distribu-
tions Pr and Pθ which is defined by:

W (Pr,Pθ) = inf
γ∈Π(Pr,Pθ)

E(ξ,η)∼γ [c(ξ, η)]

= inf
γ∈Π(Pr,Pθ)

∫
X×X

c(ξ, η)dγ(ξ, η) (14)

where Π(Pr,Pθ) denotes the set of all joint distribution-
s γ(ξ, η) whose marginals are respectively Pr and Pθ, and
c(ξ, η) is the cost function c: X × X 7→ R+.



Figure 1: Input and output for adversarial TPP learning. Left branch:
conditional GAN model; right: random input based model.

Instead of directly solving Eq. 14, [Arjovsky et al., 2017]
turns to its Kantorovich-Rubinstein duality written by:

W (Pr,Pθ) = sup
||fw||L≤1

Eξ∼Pr [fw(ξ)]− Eη∼Pθ [fw(η)] (15)

for all the 1-Lipschitz functions f mapping event sequence
to a real number: X 7→ R. Here we parameterize fw with
parameter w to approximate its search space.

In the context of WGAN, one aims to find a parameter-
ized generator gθ whose generated distribution is close to the
real data ξ w.r.t. Wasserstein distance and the mapping func-
tion fw is called the discriminator or critic. Hence we let
η = gθ(ζm). Moreover to enforce the Lipschitz constraints,
meanwhile avoiding the computation of the gradient which
can be costly, regularization can be added with weight ν:

min
θ

max
w

1

L

L∑
l=1

fw(ξl)−
L∑
l=1

fw(gθ(ζl))︸ ︷︷ ︸
Wasserstein distance (random input)

− ν
L∑

l,m=1

∣∣∣∣ |fw(ξl)− fw(gθ(ζm))|
|ξl − gθ(ζm)|?

− 1

∣∣∣∣︸ ︷︷ ︸
Gradient-free Lipschitz regularizer

(16)

We analyze the terms in the formula as follows:
i) Unconditional generative model. Here gθ is the se-

quence generator and ζl is the sequence sampled from a Pois-
son process, akin to the role of the uniform distribution [0, 1]
used in GAN for vector like data generation.

ii) Gradient-free Lipschitz regularizer. The key for this
regularizer is how to define the Wasserstein distance between
two sequence (i.e. the denominator |ξl − gθ(ζm)|?). In fact it
has been shown that this is equivalent to the optimal transport
problem which involves the doubly stochastic matrix for map-
ping sequence points in the two parts. Moreover, by Birkhof-
f’s theorem, the extreme points of the set of doubly stochastic
matrices is a permutation. Accordingly the Wasserstein dis-
tance can be specified as follows which is proved indeed a
valid norm [Xiao et al., 2017a]:

min
σ

∑n

i=1
‖xi − yσ(i)‖+

∑m

i=n+1
‖s− yσ(i)‖ (17)

where s is a given limiting point at the border of the compact
space S and the minimum covers all permutations 1 . . .m
such that the second term penalizes unmatched points.

It can be further shown that the identity permutation i.e.
σ(i) = i (σ is permutation mapping) is the minimizer in (17)
and it leads to the reduced form for a time window [0, T ):

‖ξ − ρ‖? =

n∑
i=1

|ti − τi|+
m∑

i=n+1

(T − yi) (18)

Conditional Wasserstein learning
However, the above method can only model the overall dis-
tribution of the whole training set, which cannot be directly
used for individual sequence modeling. The conditional GAN
technique is explored by [Xiao et al., 2018] to enable individ-
ual level prediction from its history observation. Specifically,
the overall objective function becomes:

min
θ

max
w

L∑
l=1

fw({ζl, ρl})−
L∑
l=1

fw({ζl, gθ(ζl)})︸ ︷︷ ︸
Wasserstein distance between two distribution (conditional)

− λ|f ′w(x̂)− 1|︸ ︷︷ ︸
1-Lipschitz regularizer

−σ log (Pθ(ρ|ζ))︸ ︷︷ ︸
Likelihood loss

(19)

where ηl is the observed sequence, ρl is the real sequence for
prediction, λ, σ are weights. We discuss this formula:

i) Conditional generative model. Here ζl is the observed
history for each individual sequence l, differing from the un-
conditional model sampling from the Poisson process. In fact,
gθ(ζl) is embodied by a sequence-to-sequence recurrent net-
work (seq2seq LSTM) in [Xiao et al., 2018].

ii) New Lipschitz regularizer. Inspired by the improved
technique for WGAN [Arjovsky et al., 2017], the gradien-
t based regularizer is used. Note x̂ is the interpolation of
{ζl, ρl} and {ζl, gθ(ζl)} which can be randomly sampled.

iii) Combining with likelihood loss. Though the likeli-
hood loss or KL divergence only considers the relative prob-
ability of two samples instead of their closeness, the advan-
tage is that it is an unbiased estimation of parameters while
Wasserstein distance has biased gradients. Hence it is natural
to add the likelihood loss to make the best of the two worlds.

4 Applications and Further Discussion
4.1 Scenarios and practical challenge
Prediction Among the popular models, the self-exciting
Hawkes process has received extensive attentions which is
first used for seismology. Recently it spans a wide range of
applications such as finance [Errais et al., 2010], bioinformat-
ics [Reynaud-Bouret et al., 2010], criminology [Mohler et al.,
2011], equipment maintenance [Ertekin et al., 2015], terrorist
[Porter et al., 2012], and social network [Du et al., 2015], to
name a few. These applications typically involve generative
models which aim to estimate the model parameters via max-
imum likelihood estimator for the observed history events.

Given learned TPP models, the application often involves
accurate future event prediction. Due to the stochastic nature,
related techniques often involve approximations and heuris-
tics corrections e.g. RPP [Gao et al., 2015], SEISMIC [Zhao



et al., 2015]. The classic and general approach is by simu-
lating future events using Shedler-Lewis thinning algorithm
or Ogata’s modified thinning algorithm [Ogata, 1981] which
suffers from the edge effects. Interestingly [Wang et al.,
2017b] presents a principled paradigm for linking microscop-
ic event data to macro scope prediction, with a jump stochas-
tic differential equation model.

Clustering Compared with time series, clustering a set
of event sequences into different clusters is more challeng-
ing due to the representation difficulty of event sequence. A
few works tend to learn each sequence’s point process mod-
el and then perform clustering based on the distance among
the learned models either in a parametric [Luo et al., 2015]
or nonparametric way [Lian et al., 2015]. The drawback is
that the clustering step can be sensitive to the learning results,
while the learning involves too many models incurring over-
fitting. In the seminal work [Xu and Zha, 2017], a method for
joint clustering and point process model learning is present-
ed i.e. the clustered event sequences share the same learned
model. The method is a Dirichlet mixture model of Hawkes
processes and the local identifiability problem is also studied.

Another typical scenario is intra sequence clustering, i.e.
given one event sequence, one aims to relabel each event in-
to different subsequences which can be overlapped with each
other over time. For instance, in [Du et al., 2015] the authors
aim to cluster streaming news overtime whereby each news
is labeled with different clusters, and the topic and temporal
model of news in the same cluster is learned by the Dirichlet-
hawkes processes model. An offline setting is considered in
[Yang and Zha, 2013] for clustering news in the diffusion net-
work with clustered temporal and content mixtures. Appar-
ently this setting is more challenging as all events are mixed
in a single sequence. Hence, additional information e.g. tex-
tual content for news event is infused to help disambiguation.

Causality discovery One fundamental task for multi-
dimensional point process is to learn the Granger causality
[Granger, 1969] as originally applied to processes in discrete
time. Extensions to continuous time marked point process
have been made in [Didelez, 2008] which builds a directed
Granger causality graph (or local independence graph) over
the dimensions of point process. Different from the time se-
ries based Granger causality which can be captured by vector
auto-regressive (VAR) model, causality learning for MPP is
more challenging. For the Hawkes process, the connection
between the Granger causality and impact functions has been
revealed in [Eichler et al., 2017]: uncovering whether type-u
event Granger-causes type-v event or not is equivalent to de-
tecting whether the impact function φuv(t) is all-zero or not.
Based on this, [Xu et al., 2016] extends the EM method for
learning the impact function with a series of basis kernels.

Censored sequence Most existing TPP methods assume
the observation window is complete from scratch which in
real world can hardly be satisfied. For instance, a patien-
t usually visits more than one hospitals in her life, and one
hospital can only record a subsequence of visits. Hence the
observation window for one hospital is often censored. This
problem has been well studied for survival analysis [Klein
and Moeschberger, 2005]. Recent works present global [Stre-
it, 2010] and local [Fan, 2009] maximum likelihood estima-

tors for point process, which is different from the traditional
bootstrap method [Cowling et al., 1996]. For Hawkes pro-
cess, [Xu et al., 2017] proposes a sampling-stitching synthe-
sis method to recombine short censored sequences.

Event attribution Event attribution involves hypothesiz-
ing about the unobserved attributes e.g. actors, diffusion path-
s, types. The feasibility of this problem depends on the na-
ture for how the events are generated by the process. For in-
stance, the missing event labels cannot be recovered for a set
of independent homogenous Poisson processes. Fortunate-
ly most real-world processes show highly non-homogenous
and history-dependent temporal patterns, suggesting the non-
trivial correlation (recall the concept Granger causality).

By assuming the model parameters of the Hawkes process
are known, the unknown actors in gang network is estimated
in [Stomakhin et al., 2011]. While [Hegemann et al., 2012;
Li and Zha, 2013; Cho et al., 2014] manage to iteratively es-
timate the missing actors and point process model parameters
and the mean-field variational optimization approach [Li and
Zha, 2013] provides a more tight surrogate objective function,
while the work [Cho et al., 2014] devises a latent point pro-
cess model and a variational EM algorithm for both learning
and inference whereby both space and time are considered.

4.2 Further discussion
In the above examples, the target sequence is learned by TP-
P for different tasks. Compared with feature based regres-
sion/classification models, TPP enjoys several benefits:

From the input perspective, regression/classification meth-
ods ignore the fine-grained temporal dynamics and require la-
borious and ad-hoc feature engineering to convert timestamps
into fixed-length features (e.g. mean, maximum, minimum,
variance, etc.). While TPP provides a more principled ap-
proach whereby the accurate time information is retained and
the whole history can be incorporated to facilitate the tasks of
prediction, clustering and causality discovery.

For output, in particular, TPP can generate predictions for
arbitrary time window as the objective is often for explain-
ing the joint probability of the history events (at least for
maximum likelihood based methods), which has nothing to
do with a specific future window for prediction. In contrast,
regression/classification based models often involve a fixed-
length vector as the prediction target such that the prediction
window is predefined in learning and model testing. This
limits their flexibility in for prediction with different periods.
For instance, for equipment failure prediction [Ertekin et al.,
2015], repairman may be more interested in knowing the risk
for next week while the maintenance budget planner cares
more about the overall risk for the next whole year.

5 Concluding Remarks
We have witnessed the fast adoption and development of TPP
by machine learning community, which covers both tradition-
al statistical approaches and emerging network based model-
s. We believe the neural point process methodology opens up
the new space for more expressive modeling of point process,
less demand for prior knowledge, which pushes the frontier
of machine learning towards event data.
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